100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Summary Difference- & Differential Equations for EOR (RUG)

Puntuación
-
Vendido
-
Páginas
45
Subido en
14-01-2024
Escrito en
2023/2024

Summary for the course Difference- & Differential Equation for the bachelor programme Econometrics & Operations Research containing all important concepts discussed in the lectures. Lecture slides made by A. van der Made. 2nd year course taught by D. Vullings.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
Subido en
14 de enero de 2024
Número de páginas
45
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

Difference- & Differential Equations
Summary
EBB812A05
Semester I B


Wouter Voskuilen
S4916344


Contents
1 Week 1 2
1.1 Lecture 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Lecture 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Week 2 10
2.1 Lecture 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Lecture 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Week 3 18
3.1 Lecture 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Lecture 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Week 4 25
4.1 Lecture 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Lecture 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Week 5 31
5.1 Lecture 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Lecture 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Week 6 40
6.1 Lecture 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Lecture 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Week 7 44
7.1 Lecture 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44




1

,Wouter Voskuilen Difference- & Differential Equations


1 Week 1
1.1 Lecture 1
A first order differential equation (first order ODE) is an equation of the form
F (t, x(t), x′ (t)) = 0, t∈T, (1)
where F is a function of (at most) 3 variables and T ⊆ R is connected.

NB: we confine attention to the ODEs that can be written as a recurrence relation:
x′ (t) = H(t, x(t)), t∈T,
for some function H.

Some important concepts:
− Ordinary: the function x is only differentiated with respect to one variable. This
variable is often time and denoted t.
− A first-order ODE that does not depend on t explicitly, i.e. that can be written as
F (x(t), x′ (t)) = 0, is called autonomous.
− If (y, z) 7→ F (t, y, z) is affine for all t ∈ T , then (1) is linear.
− A solution of the ODE (1) is a differentiable function x : T → C that satisfies (1).
− The general solution of (1) is the set containing all solutions of (1). So, an element of
the general solution is a function.
− An ODE like (1) together with an initial condition x(t0 ) = x0 is called an initial value
problem. A solution of the ODE that also satisfies the initial condition is a solution of
the initial value problem.
Let f and g be continuous functions. Four types of first order ODEs for which a general
method can be used to find solutions are:
1) x′ (t) = g(t) (type I ODE)
2) x′ (t) = f (t)g(x(t)) (seperable ODE)
3) x′ (t) = f (t)x(t) (homogeneous linear ODE)
4) x′ (t) = f (t)x(t) + g(t), g ̸≡ 0 (inhomogenous linear ODE)
NB: The symbol ≡ is used for constant functions, i.e. functions that attain only one value
over their entire domain.




2

,Wouter Voskuilen Difference- & Differential Equations


Solutions of Type I ODEs
Consider an ODE of the following form:
x′ (t) = g(t), t∈T.
Solutions of this type can be found by integrating both sides:
Z t Z t Z t

x(t) − x(t0 ) = x (s)ds = g(s) ⇒ x(t) = g(s)ds + x(t0 ).
t0 t0 t0

So, the general solution of a type I equation reads
Z t
x(t) = g(s)ds + c, t ∈ T , c ∈ C.
t0


Solutions of Seperable ODEs
Consider an ODE of the following form:
x′ (t) = f (t)g(x(t)), t∈T.
Suppose g(x) ̸= 0 for all x. The ODE can then be written as follows:
x′ (t)
= f (t), t∈T.
g(x(t))
Suppose we can find a primitive P of 1/g and a primitive F of f . Then by the Chain Rule:
Z t ′ Z t
x (t)
ds = P (x(t)) − P (x(t0 )) = f (s)ds = F (t) − F (t0 ).
t0 g(x(t)) t0

yielding the implicit general solution
P (x(t)) = F (t) + c, t∈T, c ∈ C.

Solutions of Homogeneous Linear ODEs
Consider an ODE of the following form:
x′ (t) = f (t)x(t), t∈T
Because this ODE is a special case of a seperable equation (with g : x 7→ x), we can again
apply the method of seperation of variables:
Z t ′ Z t
x (s)
ds = f (s)ds ⇒ log|x(t)| = F (t) + c, c ∈ R,
t0 x(s) t0

where F is a primitive of f .
So, |x(t)| = eF (t)+c and the general solution is consequently
x(t) = DeF (t) , t∈T, D ∈ R.

3

, Wouter Voskuilen Difference- & Differential Equations


The General Solution of Inhomogeneous Linear ODEs
Consider an ODE of the form

x′ (t) = f (t)x(t) + g(t), t∈T, (2)

with g ̸≡ 0.

To find solutions of this ODE we use the following result:

Theorem:
Let x∗ be a particular solution of (2). Then every solution of (2) can be written as the
sum of x∗ and a solution of the homogeneous equation x′ (t) = f (t)x(t). Conversely, any
function that can be written as the sum of x∗ and a solution of x′ (t) = f (t)x(t) is a solution
of (2). The proof is as follows:

• Suppose x1 is a solution of (2). Then:

(x1 − x∗ )′ = x′1 − x∗′ = (f x1 + g) − (f x∗ + g) = f (x1 − x∗ ).

So, x1 − x∗ is a solution of the homogeneous equation x′ = f x. The first claim now
follows by noting that x1 = x∗ + (x1 − x∗ ).

• Let y be a solution of the homogeneous equation x′ = f x. Then:

(x∗ + y)′ = x∗′ + y ′ = (f x∗ + g) + f y = f (x∗ + y) + g.

We conclude that x∗ + y is a solution of (2).

Example
Consider the following ODE:
2 +t
x′ (t) = 2tx(t) + et , t ∈ R.

We first determine the general solution of x′ (t) = 2tx(t):

x′ (t) 2
= 2t ⇒ log|x(t)| = t2 + c̃, c̃ ∈ R ⇒ x(t) = cet , c ∈ R.
x(t)
2 +t
Next, we ”figure out” that x∗ (t) = et is a particular solution of the inhomogeneous ODE.
So, the general solution reads:
2 2 +t
x(t) = cet + et , t ∈ R, c ∈ R.




4
$15.33
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
woutervoskuilen

Conoce al vendedor

Seller avatar
woutervoskuilen Rijksuniversiteit Groningen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
3
Miembro desde
3 año
Número de seguidores
2
Documentos
8
Última venta
5 días hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes