100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Notas de lectura

Correlational Research Methods notes

Puntuación
-
Vendido
-
Páginas
10
Subido en
11-01-2024
Escrito en
2022/2023

Notes on all the CRM lectures.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
11 de enero de 2024
Número de páginas
10
Escrito en
2022/2023
Tipo
Notas de lectura
Profesor(es)
Marjan bakker
Contiene
Todas las clases

Temas

Vista previa del contenido

Correlation research methods 2022-2023

Week 1
Different aspects of empirical research
‣ Samples versus populations
‣ Descriptive or inferential statistics
‣ Levels of measurement
‣ Experimental, quasi-experimental or correlational method

There is different kinds of sampling.
Firstly, there is simple random
sampling for which every member in a
population has an equal chance to be
sampled. Then there is stratified
sampling where a population is divided
into strata based on descriptive factors
such as age and gender. A random
sample is then drawn from each
sample. Lastly, there is convenience sampling which is a sample technique using
people who are readily available.

Descriptive statistics summarizes data with a mean, median, mode, variance, and
standard deviation after studying the sample. For inferential statistics we use a sample
to create generalizability for the population we drew the sample from. Procedures used
to do this are null hypothesis testing and confidence interval estimation. Null
hypothesis testing first formulates a null and alternative hypothesis. Then a decision
rule is made and after that the t- and p-value are obtained. Based on these values the
null hypothesis is kept or rejected.

In this course categorical and quantitative variables are distinguished. Categorical
examples are gender, diagnosis, social class, etc. examples of quantitative variables are
age, IQ, exam scores, etc.

Pearson’s correlation coefficient is a coefficient in statistics that measures the
statistical relationship, or association, between two continuous variables. If r = 0 there is
no linear association but there might be a non-linear one.

Rule of thumb table for association
r Interpretation correlational strength
1.00 Perfect
0.50 Strong
0.30 Medium
0.10 Small
0.00 No effect

When doing a data analysis a scatterplot is made in which outliers can be seen.
Outliers are data marks that don’t lie within the line of association. Bivariate outlies are
values that are not atypical for the distributions of variables x and y considered
separately, but is atypical for their bivariate distribution.

, t=r
√ N −2
1−r 2

The p-value is the probability of the data in the sample. When p<α reject the null
hypothesis.

Week 2
X and Y are linearly correlated and their relation is drawn by
drawing a straight line through the scatterplot.

r 2XY = proportion of the variance in X you can linearly predict from
Y

Correlation ≠ causation

There are different types of relationships between variables
‣ Direct: X  Y
‣ Indirect: X  Z (mediator)  Y
‣ Spurious: X  Z (mediator)  Y
‣ Correlation coefficient: X1 ↔ X2

In simple linear regression there’s an independent variable X and a dependent variable
Y. The arrow always points to the dependent variable (X  Y).

A linear relationship between Y and X means that we can predict Y from X using a
'
linear function. We use the formula: Y =b 0+ b1 X . Y ' is the predicted value of Y given X .
b 0 is the intercept which means the predicted value Y ' when someone scores 0 on X .
b 1 is the regression coefficient which is the change in Y ' when X increases with one
unit. b 0 and b 1 are the parameters of the model.

Simple regression analysis step by step
1. Find the best fitting straigt line given all the values in the data set. The values
from which you can best predict Y from X.
2. Decide how well Y can be predicted by inspecting individual prediction errors
using the formula: e 1=Y i−Y i ' .
3. Check whether you can generalize the results to the population levels.

Sy
b 1=r
Sx
Σ (Z x × Z y )
r= where Z x =( X −X ) / S x and Z y =( Y −Y ) / S y
N
2 2 2
The total variance can be split into two parts SY =SY ' + S e . To calculate the proportion of
2
2 SY ' 2
explained variance we use RY ∙ X = 2 . 1−R Y ∙ X is the unexplained variance.
SY

b^1−b1
t=
SE ( b^ )
1
$9.15
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
pauline4
4.0
(1)

Conoce al vendedor

Seller avatar
pauline4 Tilburg University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
3
Miembro desde
4 año
Número de seguidores
0
Documentos
3
Última venta
10 meses hace

4.0

1 reseñas

5
0
4
1
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes