100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

SOLUTIONS MANUAL for Plasma Physics An Introduction 2nd Edition by Fitzpatrick Richard.

Puntuación
-
Vendido
-
Páginas
101
Grado
A+
Subido en
08-01-2024
Escrito en
2024/2025

SOLUTIONS MANUAL for Plasma Physics An Introduction 2nd Edition by Fitzpatrick Richard.

Institución
Plasma Physics An Introduction
Grado
Plasma Physics An Introduction











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Plasma Physics An Introduction
Grado
Plasma Physics An Introduction

Información del documento

Subido en
8 de enero de 2024
Número de páginas
101
Escrito en
2024/2025
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

, CHAPTER 1

Chapter 1



1.1 (a) Consider a one-dimensional slab of plasma whose whose bounding surfaces are nor-
mal to the x-axis. Suppose that the electrons (whose mass, charge, and number density
are me, −e, and ne, respectively) displace a distance δxe parallel to the x-axis, whereas
the ions (whose mass, charge, and number density are mi, +Z e, and ni = ne/Z, re-
spectively) displace a distance δxi. The resulting charge density that develops on the
leading edge of the slab is
σ = −e ne δxe + Z e ni δxi = e ne (δxi − δxe). (1)

An equal and opposite charge density develops on the opposite face of the slab. The
x-directed electric field generated inside the slab is
σ e ne
E =− =− (δx − δx ). (2)
x i e
ǫ0 ǫ0
The equation of motion of an individual electron inside the slab is thus

.. e2 ne
me δ xe = −e Ex = (δxi − δxe). (3)
ǫ0
Likewise, the equation of motion of an individual ion is

.. Z 2 e2 n i
mi δ xi = Z e Ex = − (δxi − δxe). (4)
ǫ0
Let us search for simultaneous solutions of Equations (3) and (4) of the form

δxe(t) = δxˆe cos(ω t), (5)
δxi(t) = δxˆi cos(ω t). (6)

It follows that

(ω2 − Π e2) δxˆe + ω p2 e δxˆi = 0, (7)
Πi2 δxˆe + (ω2 − ω p2 i) δxˆi = 0, (8)
where Πe = (e2 ne/ǫ0 me)1/2 and Πi = (Z 2 e2 ni/ǫ0 mi)1/2. The solutions are ω = 0
with δxˆe = δxˆi, and ω2 = Π 2 + Π 2 with Π 2 δxˆe + Π 2 δxˆi = 0. The former mode
e i i e
corresponds to a uniform translation of the slab. The latter mode is a plasma oscillation
whose frequency, Π, satisfies
1/2
Π = Πe2 + Πi2 , (9)

1

,2 □ Plasma Physics: An Introduction (Second Edition): Solutions to Exercises

and whose characteristic ratio of ion to electron displacement amplitudes is
δxˆi Π i2 me
δxˆ = − = −Z i . (10)
e Π e2 m
(b) Suppose that the electrons, whose temperature is Te, are distributed according to the
Maxwell-Boltzmann law,

ne + δne = ne exp(+e δΦ/Te), (11)

where ne is the equilibrium number density, and δne is the number density perturbation
due to the perturbing potential δΦ. Likewise, the ions, whose temperature is Ti, are
distributed according to

ni + δni = ni exp(−Z e δΦ/Ti). (12)

Thus, in the limit that δΦ is small, we obtain
e ne
δne = δΦ, (13)
Te
Z e ni
δni = − δΦ. (14)
Ti
If δΦ is a consequence of a small perturbing charge density, δρext, then the total charge
density is
2 2
!
e2 ne Z e ni
δρ = δρext + Z e δni − e δne = δρext − + . (15)
Te Ti
Thus, Poisson’s equation,
2 δρ
∇ δΦ = − , (16)
ǫ0
yields 2
2 δρext
∇ – δΦ = − , (17)
λ 2D ǫ 0

where !2 !2 !2
1 1 1 1
= + , (18)
λD 2 λD e λD i
with λD e = (ǫ0 Te/ne e2)1/2 and λD i = (ǫ0 Ti/ni Z 2 e2)1/2. Comparison of Equation (17)
with Eq. (1.14) in the book reveals that λD is the effective Debye length.
1.2 It is reasonable to assume, by symmetry, that the perturbed potential is a function only of the
radial spherical coordinate r. In other words, δΦ = δΦ(r). Thus, the governing differential
equation becomes !
1 d 2 dδΦ 2
2 r – 2 δΦ = 0 (19)
r dr dr λD
for r ≠ 0. However, in the limit r → 0 we expect the perturbed potential to approach the
Coulomb potential: i.e.,
q
δΦ → (20)
4π ǫ0 r

, Chapter 1 □ 3

as r → 0. We also expect the potential to be well behaved in the limit r → ∞ . Let δΦ =
V(r)/r. Equation (19) transforms to give
d2V 2
− V = 0. (21)
dr2 λD2
The solution that is consistent with the boundary conditions at r = 0 and r = ∞ is
√2 r
V(r) = q . (22)
4π ǫ0 exp − λD
Thus, √
δΦ(r) = q 2r . (23)
4π ǫ0 r exp − λD

According to Poisson’s equation, the charge density of the shielding cloud is

δρ(r) = −ǫ0 ∇2δΦ. (24)

However, according to the governing differential equation,
2 2
∇ δΦ = δΦ (25)
λD2
for r ≠ 0. Hence, √
2q 2r
δρ(r) = − exp − . (26)
4π r λD2 λD
The net shielding charge contained within a sphere of radius r, centered on the origin, is
∫ r ∫ √ ′
′ ′2 ′ 2q r ′ 2r ′
Q(r) = 4π δρ(r ) r dr = − r exp − dr . (27)
0 λD 0 λD
2

Thus, √ √
∫ √

x.λD r/ 2
λD r/ 2 λD r/ 2
Q(r) = −q x e−x dx = −q −x e− 0 + e− dx , (28)
0 0 x
.
which reduces to √2 r √ 2r
Q(r) = −q 1 − 1 + exp − . (29)
λD λD
1.3 Consider a one-dimensional slab of plasma whose bounding surfaces are normal to the x-
axis. Suppose that the electrons (whose mass, charge, and number density are me, −e, and
ne, respectively) displace a distance δxe parallel to the x-axis, whereas the ions remain sta-
tionary. The resulting charge density that develops on the leading edge of the slab is

σ = −e ne δxe. (30)

An equal and opposite charge density develops on the opposite face of the slab. The x-
directed electric field generated inside the slab is
σ e ne
E =− = δx . (31)
x e
ǫ0 ǫ0
$25.79
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Succeed Havard University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1796
Miembro desde
5 año
Número de seguidores
1499
Documentos
5757
Última venta
1 día hace

3.9

286 reseñas

5
162
4
34
3
34
2
9
1
47

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes