100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Brunel - Computer Science - CS1005 Logic and Computation Lecture Notes (Exam Revision)

Puntuación
-
Vendido
-
Páginas
43
Subido en
06-01-2024
Escrito en
2018/2019

These are the lecture notes I created which I used to revise for the CS1005 Logic and Computation exam at Brunel University in which I received a First Class in.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Desconocido
Grado

Información del documento

Subido en
6 de enero de 2024
Número de páginas
43
Escrito en
2018/2019
Tipo
Notas de lectura
Profesor(es)
David gilbert
Contiene
Todas las clases

Temas

Vista previa del contenido

Module: CS1005
Lecture Topic: Turing Machines
Week: 2
Alan Turing (1936)
British Mathematician




Developed the idea of an abstract machine that could perform logical operations. It could
read, write or delete symbols on an infinitely long tape.
Turing machine
 Infinite tape: Denumerable set of locations, each containing exactly one symbol
 Read-write head: can move one location left or right
 A state register: stores the state of the machine
 A finite table of instructions: Erase/write a symbol, move left/right/no move, go to a
new state or stay in same state.
Operation
 State
 Value at current tape position
 Actions at each step: write a value at current tape position, move/read/write
head/change state.


1/0 represent binary numbers.
* at the right hand side of the number is the terminating symbol.
Turing Machines can calculate:
Computable numbers: a Turing machine which starting from a blank tape computes an
arbitrary precise approximation to that number.
Computable Functions: machine for addition
Universal Turing Machine: start the UTM on a tape which includes another TM, it can
simulate the TM – like a computer running code.
Turning Machines cant:
A particular TM and input determine whether it will halt or not. This is the halting problem,
a function that returns true if it halts and is incomputable.
Analogue: continuously varying value, as in analogue signal
Digital: varies in discrete steps, normally encoded as binary

,Module: CS1005
Lecture Topic: State Transition Diagrams & Turning Machines
Week: 3
Automata Theory
Automatons are abstract models of machines that performs computation on an input by
moving through a series of states or configurations. Examples of Automated Machines:
finite state machines, turing machines.
Characteristics:
 Inputs: Assumed to be sequences of symbols selected from a finite set of input
signals.
 Outputs: sequences of symbols selected from a finite set.
 States: Finite set, whose definition depends on the type of automaton.
State Transition Diagram:
A diagram that indicates the possible states of automaton and the allowable transitions
between such states.
 Circles/Nodes represent a state
 Arrows represent state transitions
 Each arrow also represents one instruction
 An arrow is labelled with current symbol (input), new symbol (output) and direction.


Turing machine: has a date structure called an infinite tape.
The tape is divided into cells and each cell contains one symbol.
Δ denotes an empty or blank cell.
A head accesses one cell at a time, it can read/write/move left or right. The head is at the
beginning of the tape at the beginning of computation.
State Machine for Turing:
 It is a Finite State Machine
 It has an initial state
 Final States where we stop computation: the accept and reject state
 The machine may enter into a loop where we do not stop
 It is a deterministic machine, every state has one transition we can take.

,  A Turing Machine is a state machine but it has an infinite tape.
 The programme of a TM is represented as a diagram: depending on the symbol
under the head and the state, the machine writes a symbol, moves left or right or
stays in place, and/or changes state.
Once a Turing Machine enters the accept/reject state it stops
• L=01*0 means one 0, any number of 1s, 0 at the end.

, Module: CS1005
Lecture Topic: Finite State Machines
Week: 4
Finite State Machines
 The simplest model of computation
 Small computer or controller: limited memory, not a lot of computational power
 Not a lot of computational power
 They have a start state
 They can be used to accept or generate strings


• A (deterministic) finite state machine is defined by tuple (S,s1,X,Y,d,l) in which:
• S is a finite set of states and s1 is the initial state (nodes)
• X is the finite input alphabet/set
• Y is the finite output alphabet/set
• function d is the state transfer function (edges), d(S,X)=S
• function l is the output function.




• Examples of the application of FSMs:
Embedded systems
• Vending machine
• Washing machines
• Controlling lifts (elevators)
• Railway junctions
• Telephone networks
A turing machine is a finite state machine plus a tape memory.
Finite state machine is a state machine with a start date. It has limited memory.
$4.12
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
cslbrunel Brunel University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
63
Miembro desde
3 año
Número de seguidores
34
Documentos
29
Última venta
4 meses hace
Brunel Computer Science (1st Class Honours)

I achieved a First Class Honours degree in Computer Science from Brunel University - I will be uploading some of my work. Please do not purchase any documents looking for the solution to your assignments or deliverables. No refunds / exchanges.

5.0

2 reseñas

5
2
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes