100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Otro

Solution Manual for Modern Physics 5th Edition by Stephen Thornton, Andrew Rex

Puntuación
-
Vendido
33
Páginas
19
Subido en
19-12-2023
Escrito en
2023/2024

The solution manual covers chapters 2 to 16, there is one Word file for each of chapters which has 239 pages totally

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Grado

Información del documento

Subido en
19 de diciembre de 2023
Número de páginas
19
Escrito en
2023/2024
Tipo
Otro
Personaje
Desconocido

Temas

Vista previa del contenido

Solution Manual for
Modern Physics for
Scientists and Engineers
5th Edition by Stephen
Thornton & Andrew Rex


More than 60,000 Solution Manual and Test
Bank are available in our archive.

If you want full complete of this solution Manual, don’t hesitate to contact me:

Email:
WhatsApp: https://wa.me/message/2H3BV2L5TTSUF1
Telegram: https://t.me/solutionmanual


We can access any Solution Manual, Test Bank and E-Books.


Important: Our service is not available for these countries: Libya, Syria,
Yemen, North Korea, Venezuela, Myanmar, Somalia

,Chapter 2 Special Theory of Relativity 1




Chapter 2
d 2x d 2 y d 2z 
1. For a particle Newton’s second law says F = ma = m  2 iˆ + 2 ˆj + 2 kˆ  .
 dt dt dt 
Take the second derivative of each of the expressions in Equation (2.1):
d 2 x d 2 x d 2 y  d 2 y d 2 z  d 2 z
= 2 = 2 = 2 . Substitution into the previous equation gives
dt 2 dt dt 2 dt dt 2 dt
 d 2 x ˆ d 2 y  ˆ d 2 z  ˆ 
F = ma = m  2 i + 2 j + 2 k  = F .
 dt dt dt 
 dx dy ˆ dz ˆ 
2. From Equation (2.1) p = m  iˆ + j + k .
 dt dt dt 
dx dx dy dy dz  dz
In a Galilean transformation = −v = = .
dt dt dt dt dt dt
 dx  ˆ dy ˆ dz  ˆ
Substitution into Equation (2.1) gives p = m  + v i + j+ k  p .
 dt  dt dt
 dx dy ˆ dz  ˆ 
However, because p = m  iˆ + j + k  the same form is clearly retained, given
 dt dt dt 
dx dx
the velocity transformation = −v.
dt dt
3. Using the vector triangle shown, the speed of light coming toward the mirror is c 2 − v 2
distance 2 2
and the same on the return trip. Therefore the total time is t2 = = .
speed c2 − v2
v v
Notice that sin  = , so  = sin −1   .
c c

, https://unihelp.xyz/solution-manual-modern-physics-thornton/
Contact me on email () to access complete document, if you can't open/access/reach our si
2 Chapter 2 Special Theory of Relativity



 0.350 m/s 
4. As in Problem 3, sin  = v1 / v2 , so  = sin −1 (v1 / v2 ) = sin −1   = 16.3 and
 1.25 m/s 
v = v22 − v12 = (1.25 m/s)2 − (0.35 m/s)2 = 1.20 m/s .
5. When the apparatus is rotated by 90°, the situation is equivalent, except that we have
effectively interchanged 1 and 2 . Interchanging 1 and 2 in Equation (2.3) leads to
Equation (2.4).
d
6. Let n = the number of fringes shifted; then n = . Because d = c ( t  − t ) , we have

c ( t  − t ) v2 ( + ) . Solving for v and noting that
n= = 1 2
1 + 2 = 22 m,
 c 
2



n ( 0.005) ( 589 10−9 m )
v=c = ( 3.00 10 m/s ) 8
= 3.47 km/s.
1+ 2 22 m

7. Letting 1 → 1 1 −  2 (where  = v / c ) the text equation (not currently numbered) for
t1 becomes
2 1−  2 2 1
t1 = 1
=
c (1 −  ) c 1−  2
which is identical to t 2 when 1 = 2 so t = 0 as required.
8. Since the Lorentz transformations depend on c (and the fact that c is the same constant
for all inertial frames), different values of c would necessarily lead two observers to
different conclusions about the order or positions of two spacetime events, in violation of
postulate 1.
9. Let an observer in K send a light signal along the + x-axis with speed c. According to the
Galilean transformations, an observer in K  measures the speed of the signal to be
dx dx
= − v = c − v . Therefore the speed of light cannot be constant under the Galilean
dt dt
transformations.
10. From the Principle of Relativity, we know the correct transformation must be of the form
(assuming y = y and z = z  ):
x = ax + bt ; x = ax − bt .
The spherical wave front equations (2.9a) and (2.9b) give us:
ct = (ac + b)t ; ct  = (ac − b)t .
Solve the second wave front equation for t  and substitute into the first:
 (ac + b)(ac − b)t 
ct =   or c2 = (ac + b)(ac − b) = a2c2 − b2 .
 c 
Gratis
Accede al documento completo:
Descarga

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
dorondadia

Conoce al vendedor

Seller avatar
dorondadia Israel University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
37
Miembro desde
2 año
Número de seguidores
1
Documentos
3
Última venta
5 días hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes