100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

ISYE 6414 FINAL EXAM REVIEW 2023 NOVEMBER QUESTIONS WITH COMPLETE SOLUTION

Puntuación
-
Vendido
-
Páginas
9
Grado
A+
Subido en
18-11-2023
Escrito en
2023/2024

ISYE 6414 FINAL EXAM REVIEW 2023 NOVEMBER QUESTIONS WITH COMPLETE SOLUTION Least Square Elimination (LSE) cannot be applied to GLM models. Ans***False - it is applicable but does not use data distribution information fully. In multiple linear regression with idd and equal variance, the least squares estimation of regression coefficients are always unbiased. Ans***True - the least squares estimates are BLUE (Best Linear Unbiased Estimates) in multiple linear regression. Maximum Likelihood Estimation is not applicable for simple linear regression and multiple linear regression. Ans***False - In SLR and MLR, the SLE and MLE are the same with normal idd data. The backward elimination requires a pre-set probability of type II error Ans***False - Type I error The first degree of freedom in the F distribution for any of the three procedures in stepwise is always equal to one. Ans***True MLE is used for the GLMs for handling complicated link function modeling in the X-Y relationship. Ans***True In the GLMs the link function cannot be a non linear regression. Ans***False - It can be linear, non linear, or parametric When the p-value of the slope estimate in the SLR is small the r-squared becomes smaller too. Ans***False - When P value is small, the model fits become more significant and R squared become larger. In GLMs the main reason one does not use LSE to estimate model parameters is the potential constrained in the parameters. Ans***False - The potential constraint in the parameters of GLMs is handled by the link function. The R-squared and adjusted R-squared are not appropriate model comparisons for non linear regression but are for linear regression models. Ans***TRUE - The underlying assumption of R-squared calculations is that you are fitting a linear model. The decision in using ANOVA table for testing whether a model is significant depends on the normal distribution of the response variable Ans***True When the data may not be normally distributed, AIC is more appropriate for variable selection than adjusted R-squared Ans***True The slope of a linear regression equation is an example of a correlation coefficient. Ans***False - the correlation coefficient is the r value. Will have the same + or - sign as the slope. In multiple linear regression, as the value of R-squared increases, the relationship between predictors becomes stronger Ans***False - r squared measures how much variability is explained by the model, NOT how strong the predictors are. When dealing with a multiple linear regression model, an adjusted R-squared can be greater than the corresponding unadjusted R-Squared value. Ans***False - the adjusted rsquared value take the number and types of predictors into account. It is lower than the r squared value. In a multiple regression problem, a quantitative input variable x is replaced by x − mean(x). The R-squared for the fitted model will be the same Ans***True The estimated coefficients of a regression line is positive, when the coefficient of determination is positive. Ans***False - r squared is always positive. If the outcome variable is quantitative and all explanatory variables take values 0 or 1, a logistic regression model is most appropriate. Ans***False - More research is necessary to determine the correct model. After fitting a logistic regression model, a plot of residuals versus fitted values is useful for checking if model assumptions are violated. Ans***False - for logistic regression use deviance residuals. In a greenhouse experiment with several predictors, the response variable is the number of seeds that germinate out of 60 that are planted with different treatment combinations. A Poisson regression model is most appropriate for modeling this data Ans***False - poisson regression models rate or count data. For Poisson regression, we can reduce type I errors of identifying statistical significance in the regression coefficients by increasing the sample size. Ans***True Both LASSO and ridge regression always provide greater residual sum of squares than that of simple multiple linear regression. Ans***True If data on (Y, X) are available at only two values of X, then the model Y = beta_1 X + beta_2 X^2 + epsilon provides a better fit than Y = beta_0 + beta_1 X + epsilon. Ans***False - nothing to determine of a quadratic model is necessary or required. If the Cook's distance for any particular observation is greater than one, that data point is definitely a record error and thus needs to be discarded. Ans***False - must see a comparison of data points. Is 1 too large?

Mostrar más Leer menos
Institución
ISYE 6414 ,2023 NOVEMBER
Grado
ISYE 6414 ,2023 NOVEMBER









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
ISYE 6414 ,2023 NOVEMBER
Grado
ISYE 6414 ,2023 NOVEMBER

Información del documento

Subido en
18 de noviembre de 2023
Número de páginas
9
Escrito en
2023/2024
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

$15.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
clank4785
1.0
(1)

Conoce al vendedor

Seller avatar
clank4785 Walden University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
5
Miembro desde
2 año
Número de seguidores
2
Documentos
221
Última venta
6 meses hace

1.0

1 reseñas

5
0
4
0
3
0
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes