100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Test Bank for Julien’s Primer of Drug Action.pdf

Puntuación
-
Vendido
-
Páginas
511
Grado
A+
Subido en
14-11-2023
Escrito en
2023/2024

COLLEGE ALGEBRA AND TRIGONOMETRY DATE 1. Match the set described in Column I with the correct interval 1. a. notation from Column II. Choices in Column II may be used once, more than once, or not at all. b. I II c. a. Domain of f (x)  x  3 A. (,) d. b. Range of f (x)  3 B. 3,  c. Domain of f  x  x 2 16 C. 0, 2 e. d. Range of y  2x 2 D. 0,  e. Domain of f (x)  E. 3, 3 f. f. Range of f (x)   2 F. , 2 g. Domain of f (x)  x  2 G. 3,  g. h. Range of f (x)  x  3 H. 7,  i. Domain of y  2s 2 h. j. Range of f  x  x 2  7 i. j. The graph shows the line that passes through the points (  5,  3) and (  1, 4). Refer to it to answer Exercises 2–6. 2. What is the slope of the line? 2. 3. What is the distance between the two points shown? 3. 4. What are the coordinates of the midpoint of the segment 4. joining the two points? 5. Find the standard form of the equation of the line. 5. 6. Write the linear function defined by has this line as its graph. f (x)  ax  b that 6. 3 x  2 CHAPTER 2, FORM A 55 .  5 7  Tell whether each graph is that of a function. Give the domain and the range. If it is a function, give the intervals where it is increasing, decreasing, or constant. 7. 7. 8. 8. 9. Suppose point P has coordinates  2 , 3  .   a. What is the equation of the vertical line through P? 9. a. b. What is the equation of the horizontal line through P? b. 10. Find the slope-intercept form of the equation of the line passing through (2, 5) and a. parallel to the graph of y  4x  7; 10. a. b. perpendicular to the graph of y  4x  7. b. Graph each relation. 11. x  2 y  3 1 11. CHAPTER 2, FORM A 56 .  3x 1 if x  0 12. 13. f  x  □ x□  2 f  x  2x 1 if x  0  12. 13. 14. Explain how the graph of y   1 2  5 can be obtained 14. from the graph of y  x. 15. Determine whether the graph of 2x 2  3y 2  1 is symmetric 15. a. with respect to b. a. the x-axis, c. b. the y-axis, c. the origin. Given f  x  x 2 1 and g  x  2x 1, find each of the following. Simplify the expressions when possible. 16.  fg x 17.  f  g x 18. the domain of g f 16. 17. 18. x  3 CHAPTER 2, FORM A 57 .   19. f  x  h  f  x h 19. 20.  f  g0 20. 21.  f  2  g  21. 22.  f ∘ g  x 23.  f ∘ g2 24.  g ∘ f  x 25.  g ∘ f 2 22. 23. 24. 25. CHAPTER 2, FORM B NAME x 3 x COLLEGE ALGEBRA AND TRIGONOMETRY DATE 1. Match the set described in Column I with the correct interval 1. a. notation from Column II. Choices in Column II may be used once, more than once, or not at all. b. I II c. a. Domain of f (x)  x  4 A. (,) d. b. Range of f (x)   2 B. 2,  c. Domain of f  x  3x 2 C. 0, 2 e. d. Range of f  x  x 2  5 D. 0,  e. Domain of f (x)  E. 3, 3 f. f. Range of f (x)  1 F. , 2 g. Domain of f (x)  x  2 G. 5,  g. h. Range of f (x)  x  5 H. 4,  i. Domain of x  2y 2 j. Range of x  2y 2 h. i. j. The graph shows the line that passes through the points (  2,  1) and (4,  3). Refer to it to answer Exercises 2–6. 2. What is the slope of the line? 2. 3. What is the distance between the two points shown? 3. 4. What are the coordinates of the midpoint of the segment 4. joining the two points? 5. Find the standard form of the equation of the line. 5. 6. Write the linear function defined by has this line as its graph. f (x)  ax  b that 6. 3 x  8 CHAPTER 2, FORM B   " " 1 Tell whether each graph is that of a function. Give the domain and the range. If it is a function, give the intervals where it is increasing, decreasing, or constant. 7. 7. 8. 8. Graph each relation. 9. f  x  2  3x 9. 10. c Ч f x  x " e 2 ff 10. CHAPTER 2, FORM B    8  9 11. 2x if x  3 11. f  x   4 if  3  x  2 x  4 if x  2 12. Suppose point P has coordinates  5 , 7  .   a. What is the equation of the vertical line through P? 12. a. b. What is the equation of the horizontal line through P? b. 13. Find the slope-intercept form of the equation of the line passing through 6, 3 and a. parallel to the graph of y  3x 12; 13. a. b. perpendicular to the graph of y  3x 12. b. 14. Explain how the graph of y   1 3  2 can be obtained 14. from the graph of y  x. 15. Determine whether the graph of y 2  3x is symmetric 15. a. with respect to b. a. the x-axis, c. b. the y-axis, c. the origin. Given f  x  2x 2  7x  6 and g  x  3x  2, find each of the following. Simplify the expressions when possible. 16.  fg x 17.  f  g x 18. the domain of g f 16. 17. 18. x  4 CHAPTER 2, FORM B   19. f  x  h   f  x  h 19. 20.  f  g   1  20. 21.  g   0   f  21. 22.  f ∘ g   x  23.  f ∘ g   1  24.  g ∘ f   x  25.  g ∘ f   1  22. 23. 24. 25. CHAPTER 2, FORM C NAME 62 x 3 x COLLEGE ALGEBRA AND TRIGONOMETRY DATE 1. Match the set described in Column I with the correct interval 1. a. notation from Column II. Choices in Column II may be used once, more than once, or not at all. b. I II c. a. Domain of f (x)  x  2 A. (,) d. b. Range of f (x)   4 B. 4,  c. Domain of f  x  x 2 1 C. 0, 2 e. d. Range of f  x  x 2 16 D. 0,  e. Domain of f (x)  E. 3, 3 f. f. Range of f (x)   2 F. , 3 g. Domain of f (x)  x  3 G. 1,  g. h. Range of f (x)  x  3 H. 2,  i. Domain of y  2x 2 h. j. Range of y  x 2  3 i. j. The graph shows the line that passes through the points (  3,  5) and (3,  2). Refer to it to answer Exercises 2–6. 2. What is the slope of the line? 2. 3. What is the distance between the two points shown? 3. 4. What are the coordinates of the midpoint of the segment 4. joining the two points? 5. Find the standard form of the equation of the line. 5. 6. Write the linear function defined by has this line as its graph. f (x)  ax  b that 6. 3 x  2 CHAPTER 2, FORM C Tell whether each graph is that of a function. Give the domain and the range. If it is a function, give the intervals where it is increasing, decreasing, or constant. 7. 7. 8. 8. 9. Suppose point P has coordinates 2 2,  5 . a. What is the equation of the vertical line through P? 9. a. b. What is the equation of the horizontal line through P? b. 10. Find the slope-intercept form of the equation of the line passing through (4, 2 ) and a. parallel to the graph of x  5 y  2; 4 b. perpendicular to the graph of x  5 y  2; 4 10. a. b. CHAPTER 2, FORM C  1 if x  2 Graph each relation. 11. 12. 13. f  x  1 x 1  2 2 f  x  □2x□  2 f  x  x 1 if x  2  11. 12. 13. CHAPTER 2, FORM C   14. Explain how the graph of y  3 x  4  2 can be obtained 14. from the graph of y  x . 15. Determine whether the graph of y  3x 2  7 is symmetric 15. a. with respect to b. a. the x-axis, c. b. the y-axis, c. the origin. Given f  x  3x 2  2 and g  x  4x  4, find each of the following. Simplify the expressions when possible. 16.  fg x 17.  g  f  x 16. 17. 18. 19. f (2) f  x  h  f  x h 18. 19. 20.  f  g0 20. 21.  f  2  g  21. 22.  f  g x 23.  f ∘ g  x 24.  g ∘ f  x 25.  g ∘ f 0 22. 23. 24. 25. CHAPTER 2, FORM D NAME x 3 x COLLEGE ALGEBRA AND TRIGONOMETRY DATE 1. Match the set described in Column I with the correct interval 1. a. notation from Column II. Choices in Column II may be used once, more than once, or not at all. b. I II c. a. Domain of f (x)  A. , 1 d. b. Range of f (x)  1 B. ,  c. Domain of f  x  x 2  25 C. 0, 2 e. d. Range of f  x  x 2 1 D. 0,  e. Domain of f (x)  E. 3, 3 f. f. Range of f (x)   2 F. 3,  g. Domain of f (x)  x  4 G. 1,  g. h. Range of f (x)  x  4 H. 4,  i. Domain of j. Range of y  2x 2 y  x 2  4 h. i. j. The graph shows the line that passes through the points (  7,  4) and (3,  2). Refer to it to answer Exercises 2–6. 2. What is the slope of the line? 2. 3. What is the distance between the two points shown? 3. 4. What are the coordinates of the midpoint of the segment 4. joining the two points? 5. Find the standard form of the equation of the line. 5. 6. Write the linear function defined by has this line as its graph. f (x)  ax  b that 6. x  1 3 x  2 CHAPTER 2, FORM D .  2x if x  0 Tell whether each graph is that of a function. Give the domain and the range. If it is a function, give the intervals where it is increasing, decreasing, or constant. 7. 7. 8. 8. Graph each relation. 9. 10. f  x  3  x 1 f  x  x if x  0  9. 10. CHAPTER 2, FORM D .   11. Suppose point P has coordinates 3, 2.1. a. What is the equation of the vertical line through P? 11. a. b. What is the equation of the horizontal line through P? b. 12. Find the slope-intercept form of the equation of the line passing through (1, 5 ) and a. parallel to the graph of x   3 y  5; 4 b. perpendicular to the graph of x   3 y  5; 4 12. a. b. 13. Find the slope of the line through points (11, 5 ) and ( 8 , 6). 13. from the graph of y  x. 14. Explain how the graph of y  3  2 can be obtained 14. from the graph of y  x. 15. Determine whether the graph of xy  4 is symmetric 15. a. with respect to b. a. the x-axis, c. b. the y-axis, c. the origin. Given f  x  2x 3  3x 1 and g  x  2x 1, find each of the following. Simplify the expressions when possible. 16.  f  g x 16. 17. 18. 19.  f   x  g  f 0 f  x  h  f  x h 17. 18. 19. 20.  g  f 0 21.  fg1 22.  f ∘ g  x 20. 21. 22. x  4 CHAPTER 2, FORM D . 23.  f ∘ g2 24.  g ∘ f  x 25.  g ∘ f 2 23. 24. 25. CHAPTER 2, FORM E NAME 70 3 26 202 COLLEGE ALGEBRA AND TRIGONOMETRY DATE Choose the best answer. 1a. Which of the following is the domain of f  x   x ? 1a. a. 0, 3 c. 3,  b. , 3 d. ,  1b. Which of the following is the range of f  x  x 2  49 ? 1b. a. 49,  c. 7, 7 b. 7,  d. 0,  1c. Which of the following is the domain of f  x  3 x  7 ? 1c. a. ,  c. 0,  b. , 6 d. 6,  1d. Which of the following is the range of f  x  x 1? 1d. a. 1,1 c. 0,  b. 0,1 d. 1, 1e. Which of the following is the domain of x  y 2 ? 1e. a. ,  c. 0,  b. 0,  d. , 0 The graph shows the line that passes through 5, 8 and 4, 3 . Refer to it to answer Exercises 2-6. 2. What is the slope of the line? 2. a.  13 7 c.  11 9 b. 11 9 d. 0 3. What is the distance between the two points shown? 3. a. b. 2 c. d. 5 122 CHAPTER 2, FORM E 71   4. What are the coordinates of the midpoint of the segment joining 4. the two points? a.   1 , 5 b.   9 , 11   2 2     2 2   c.   3 , 1  2 2 d. 1, 5 5. Find the standard form of the equation of the line. 5. a. 11x  9y  127 c. 11x  9y  17 b. 11x  9y  17 d. 11x  9 y  127 6. Find the standard form of the equation of the line. 6. a. f  x  11 x  17 b. 9 9 c. f  x  11 x  127 d. 9 9 f  x   11 x  17 9 9 f  x  11 x  127 9 9 Tell whether each graph is that of a function. Give the domain and range. 7. 7. a. Function; domain: 5, 7; range: 1, 3 b. Function; domain: ,  ; range: 1, 3 c. Function; domain: 1, 3; range: 5, 7 d. Not a function; domain: 5, 7; range: 1, 3 8. 8. a. Not a function; domain: ,  ; range: 2,  b. Not a function; domain: 5, 5 ; range: 3,  c. Function; domain: ,  ; range: 2,  d. Function; domain: ,  ; range: 3,  CHAPTER 2, FORM E 72 9. Suppose point P has coordinates 6,1 . 9. What is the equation of the horizontal line through P? a. x  6 c. x  1 b. y 1 d. y  6 10. Find the slope-intercept form of the equation of the line passing. 10. through 2, 5 perpendicular to the graph of y   1 x  19 . 8 4 a. y  8x  21 c. y  8x 13 b. y  1 x  3 3 d. y   1 x  3 3 Graph each function. 11. f  x  2 x 1  2 11. a. b. c. d. CHAPTER 2, FORM E 73   " "   1 12. c Ч f x  x " e 2 ff 12. a. b. c. d. 2 if x  2 13. f  x   1   2 x 1 if x  2 13. a. b. c. d. CHAPTER 2, FORM E 74 14. Explain how the graph of y  x  2  5 can be obtained from the 14. graph of y  x. a. Translate 2 unit to the right and 5 units up. b. Translate 2 unit to the right and 5 units down. c. Translate 2 unit to the left and 5 units up. d. Translate 2 unit to the left and 5 units down. 15. Determine the symmetries of the graph of the relation x 2  2xy  y 2  5. a. x-axis only b. y-axis only c. origin only d. x-axis, y-axis, and origin 15. Given f  x  5x  4 and g  x  x 2  3, find each of the following. Simplify the expressions when possible. 5     5     3     3   16.  fg x 16. a. x 3  4x 2 12 b. 5x 3  4x 2 15x 12 c. 5x 3  4x 2  3x 12 d. 5x 3  4x 2  5x 12 17.  g  f  x 17. a. x 2  5x  7 b. x 2  5x  7 c. x 2  5x 1 d. x 2  5x 1 18. The domain of g f 18. a.  , 4   4 ,   b.  , 5   5 ,     4     4   c.  , 1   1 ,   d. ,  19. f  x  h  f  x h 19. a. h b. 5 c. 5x  2h d. 5x  2h  4 20.  f  g1 a. 1 b. 5 20. c. 2 d. 5

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Desconocido
Grado
Desconocido

Información del documento

Subido en
14 de noviembre de 2023
Número de páginas
511
Escrito en
2023/2024
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Test Bank for Julien’s Primer of Drug Action
Thirteenth Edition

,COLLEGE ALGEBRA AND TRIGONOMETRY DATE

1. Match the set described in Column I with the correct interval 1. a.
notation from Column II. Choices in Column II may be used
once, more than once, or not at all. b.

I II c.

a. Domain of f (x)  x  3 A. (, ) d.
b. Range of f (x)  x 3 B. 3, 
c. Domain of f  x  x2 16 C. 0, 2 e.
d. Range of y  2x 2
D. 0, 
e. Domain of f (x)  3 x  2 E. 3, 3 f.
f. Range of f (x)  3
x 2 F. , 2
g. Domain of f (x)  x  2 G. 3,  g.
h. Range of f (x)  x  3 H. 7, 
i. Domain of y  2s 2
h.
j. Range of f  x  x2  7
i.

j.

The graph shows the line that passes through the points (  5,  3)
and (  1, 4). Refer to it to answer Exercises 2–6.




2. What is the slope of the line? 2.

3. What is the distance between the two points shown? 3.

4. What are the coordinates of the midpoint of the segment 4.
joining the two points?

5. Find the standard form of the equation of the line. 5.

6. Write the linear function defined by f (x)  ax  b that 6.
has this line as its graph.

, CHAPTER 2, FORM A
Tell whether each graph is that of a function. Give the domain and the range. If it is a function, give the intervals
where it is increasing, decreasing, or constant.

7. 7.




8. 8.




2 3
9. Suppose point P has coordinates  , .
 5 7 

a. What is the equation of the vertical line through P? 9. a.
b. What is the equation of the horizontal line through P? b.


10. Find the slope-intercept form of the equation of the line passing
through (2, 5) and
a. parallel to the graph of y  4x  7; 10. a.

b. perpendicular to the graph of y  4x  7. b.



Graph each relation.

11. x  2 y  3  1 11.




55
.

, CHAPTER 2, FORM A

12. f  x   □ x□  2 12.




2x 1 if x  0
13. f  x   13.
3x
 1 if x0




1
14. Explain how the graph of y   x  3  5 can be obtained 14.
2
from the graph of y  x.

15. Determine whether the graph of 2x2  3y2  1 is symmetric 15. a.
with respect to b.

a. the x-axis, c.

b. the y-axis,

c. the origin.

Given f  x  x2  1 and g  x  2x 1, find each of the following. Simplify the expressions when possible.

16.  fg   x 16.

17.  f  g   x 17.

g
18. the domain of 18.
f



56
.
$10.29
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
akira11114684

Conoce al vendedor

Seller avatar
akira11114684 Bournemouth University (London)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2
Miembro desde
2 año
Número de seguidores
0
Documentos
79
Última venta
8 meses hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes