100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

STA2020S- Applied Stats (TIME SERIES)

Puntuación
-
Vendido
-
Páginas
70
Subido en
04-11-2023
Escrito en
2023/2024

ALL THE NOTES YOU WILL NEED TO PASS THE TIME SERIES SECTION IN THE EXAM. I put my blood sweat and tears into these notes. Second-year second-semester applied statistical science notes. Notes made from the lecture slides, textbook and lecturer talking points thus making them in-depth and comprehensive. INCLUDES QUESTIONS AND EXAMPLES OF FOR EVERY TYPE OF METHOD.

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
4 de noviembre de 2023
Archivo actualizado en
4 de noviembre de 2023
Número de páginas
70
Escrito en
2023/2024
Tipo
Notas de lectura
Profesor(es)
Na
Contiene
Todas las clases

Temas

Vista previa del contenido

Stats

,Time series analysis




Definition: A time series is a sequence of observations collected at regular equally spaced intervals over a period of time
• Time series data, i.e. records that are measured sequentially over time, are extremely common. They arise in virtually
every application field, such as:
• Business
– Sales figures, production numbers, customer frequencies
• Economics
– Stock prices, exchange rates, interest rates
• Official Statistics
– Census data, personal expenditures, road casualties

Basic Time series assumptions
The factors that influenced patterns of activity in the past and present will continue to do so in more or less the same
manner in the future (i.e. we assume that past patterns will continue into the future).

Thus the overall purpose of time series analysis is to identify and isolate these influencing factors from the past in
order to better understand the process underlying the time series, for predictive purposes.

We can conduct a time series analysis to:
a) Develop a better understanding of the pattern of behavior present and the factors/components that have given
rise to that pattern
b) Develop a model that captures as much information from the time series as possible to forecast future values of
the time series
c) ... and other uses which we don’t consider in this course

,Components of a Non-stationery time series




Trend (also known as Secular Trend) (T)
• The long-term tendency of a time series pattern to move steadily in an upward or downward direction, or stay the
same over time
e.g. population increases/decreases, consumer preferences etc.
• Can be linear or nonlinear over time
• Duration of the trend over the entire window of observation is much longer than a 1 time period
• We assume it can be predicted into the future




Cyclical variation (C)
• Irregular long-term wavelike movements through a time series (due to extended periods of prosperity/booms
followed by extended periods of recession, depression/troughs and recovery in the economy)
• Duration of the cycle is much more than 1 time period (a full cycle can last from 2 to 10 years)
• Generally the length of the cyclical variation is more than a year, and the duration is not fixed
• We assume it can be predicted because it appears to have a repetitive pattern

, Seasonal variation (S)
• Regular short-term repetitive wavelike movements through a time series, often when data is recorded hourly,
daily, weekly, monthly or quarterly.
e.g. daily traffic volume in Cape Town will display within-the-day “seasonal” behaviour, with peak levels
occurring between 8-9am and 4-5:30pm, and moderate flow during the rest of the day

• Can be predicted because the pattern is repeated many times. e.g.
- 24 hours in a day (hourly data)
- 7 days in a week (weekly data)
- 12 months in a year (monthly data)
- 4 seasons in a year (quarterly data)




Irregular/Random variation (R)
• Random variations in data due to the combined effects of all unforeseen events such as war, strikes, natural
disasters, power cuts, etc.
• Duration is short, and non repeating, emerges as variance
• There is no defined statistical technique for estimating random fluctuations in a time series i.e. they cannot be
predicted --- NB
• Tends to hide the existence of the other predictable components of a time series, especially when it is large
relative to the pattern in the data

Note: All time series include random variation.
In addition, a time series may include none, one, two or all of the other three components – trend, cyclical and
seasonal variation.

EXAMPLES
$7.97
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Gsnotes101 University of Cape Town
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
19
Miembro desde
4 año
Número de seguidores
8
Documentos
22
Última venta
1 mes hace

5.0

2 reseñas

5
2
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes