100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Algebra Integrals Integration Notes

Puntuación
-
Vendido
-
Páginas
26
Subido en
22-10-2023
Escrito en
2023/2024

Unlock Your Academic Success: The Ultimate Guide for Students!" Discover the secrets to excelling in your studies with this comprehensive document. Boost Your Grades Study Hacks and Tips Time Management Strategies

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
22 de octubre de 2023
Número de páginas
26
Escrito en
2023/2024
Tipo
Notas de lectura
Profesor(es)
Mr smith
Contiene
Todas las clases

Temas

Vista previa del contenido

8
Techniques of Integration




Over the next few sections we examine some techniques that are frequently successful when
seeking antiderivatives of functions. Sometimes this is a simple problem, since it will be
apparent that the function you wish to integrate is a derivative in some straightforward
way. For example, faced with Z
x10 dx

we realize immediately that the derivative of x11 will supply an x10 : (x11 )′ = 11x10 . We
don’t want the “11”, but constants are easy to alter, because differentiation “ignores” them
in certain circumstances, so

d 1 11 1
x = 11x10 = x10 .
dx 11 11
From our knowledge of derivatives, we can immediately write down a number of an-
tiderivatives. Here is a list of those most often used:


xn+1
Z
xn dx = + C, if n 6= −1
n+1
Z
x−1 dx = ln |x| + C
Z
ex dx = ex + C
Z
sin x dx = − cos x + C

163

,164 Chapter 8 Techniques of Integration
Z
cos x dx = sin x + C
Z
sec2 x dx = tan x + C
Z
sec x tan x dx = sec x + C

1
Z
dx = arctan x + C
1 + x2
1
Z
√ dx = arcsin x + C
1 − x2



8.1 Substitution

Needless to say, most problems we encounter will not be so simple. Here’s a slightly more
complicated example: find Z
2x cos(x2 ) dx.

This is not a “simple” derivative, but a little thought reveals that it must have come from
an application of the chain rule. Multiplied on the “outside” is 2x, which is the derivative
of the “inside” function x2 . Checking:

d d
sin(x2 ) = cos(x2 ) x2 = 2x cos(x2 ),
dx dx
so Z
2x cos(x2 ) dx = sin(x2 ) + C.

Even when the chain rule has “produced” a certain derivative, it is not always easy to
see. Consider this problem: Z p
x3 1 − x2 dx.
p
There are two factors in this expression, x3 and 1 − x2 , but it is not apparent that the
chain rule is involved. Some clever rearrangement reveals that it is:
 
1
Z p Z p
3
x 1− x2 dx = (−2x) − (1 − (1 − x2 )) 1 − x2 dx.
2

This looks messy, but we do now have something that looks like the result of the chain

rule: the function 1 − x2 has been substituted into −(1/2)(1 − x) x, and the derivative

, 8.1 Substitution 165

of 1 − x2 , −2x, multiplied on the outside. If we can find a function F (x) whose derivative

is −(1/2)(1 − x) x we’ll be done, since then
 
d 2 2 1 p

F (1 − x ) = −2xF (1 − x ) = (−2x) − (1 − (1 − x2 )) 1 − x2
dx 2
p
= x3 1 − x2

But this isn’t hard:
1 √ 1
Z Z
− (1 − x) x dx = − (x1/2 − x3/2 ) dx (8.1.1)
2 2
 
1 2 3/2 2 5/2
=− x − x +C
2 3 5
 
1 1
= x− x3/2 + C.
5 3

So finally we have
 
1 1
Z p
3 2
2
x 1 − x dx = (1 − x ) − (1 − x2 )3/2 + C.
5 3

So we succeeded, but it required a clever first step, rewriting the original function so
that it looked like the result of using the chain rule. Fortunately, there is a technique that
makes such problems simpler, without requiring cleverness to rewrite a function in just the
right way. It sometimes does not work, or may require more than one attempt, but the
idea is simple: guess at the most likely candidate for the “inside function”, then do some
algebra to see what this requires the rest of the function to look like.
One frequently good guess is any complicated expression inside a square root, so we
start by trying u = 1 − x2 , using a new variable, u, for convenience in the manipulations
that follow. Now we know that the chain rule will multiply by the derivative of this inner
function:
du
= −2x,
dx
so we need to rewrite the original function to include this:

√ −2x x2 √ du
Z p Z Z
3 3
x 1 − x2 = x u dx = u dx.
−2x −2 dx

Recall that one benefit of the Leibniz notation is that it often turns out that what looks
like ordinary arithmetic gives the correct answer, even if something more complicated is
$3.07
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
siyabongadlamini

Conoce al vendedor

Seller avatar
siyabongadlamini Vaal University of Technology
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
2 año
Número de seguidores
0
Documentos
29
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes