100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Extra uitleg getallen op R lijn

Puntuación
-
Vendido
-
Páginas
2
Subido en
21-10-2023
Escrito en
2022/2023

Meer dan alleen de reële getallen op een lijn; extra uitleg van de docent.

Institución
Grado








Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
21 de octubre de 2023
Número de páginas
2
Escrito en
2022/2023
Tipo
Notas de lectura
Profesor(es)
Meneer x
Contiene
Week 11 extra

Temas

Vista previa del contenido

42 1. GETALLEN


Een lineair geordende lichaamsuitbreiding van de reële getallen*

Veel mensen denk bij het tekenen van een getallenlijn (een rechte lijn op het
papier) aan de reële getallen. We kunnen echter nog meer getallen dan de
reële getallen bedenken die zich ook laten representeren door zo’n getallenlijn.
Hieronder geven we een voorbeeld.
Beschouw de verzameling V van alle gebroken functies p(x)/q(x) met p(x)
en q(x) 6= 0 polynomen met coëfficiënten in R. Voorbeelden van elementen in
V zijn:
x2 3 x3 + x2 + 1 2, 34 ⇡
, 7 , en .
2x x 3x6 8 x 1
De reële getallen kun je opvatten als een deelverzameling van V , aangezien je
elk reëel getal r kunt opvatten als de constante functie 1r (oftewel 1r : R ! R
door x 7! 1r ).
Opgave 1.113. (U) Schrijf in de vorm p(x)/q(x).
1 1
a) x+2 + x+3
x2 +2x 7x 1
b) x5 · x+1
x2 +1
c) ( x ) 1
d) De additieve inverse van x35x
+1
e) De multiplicatieve inverse van x2


Je kunt met de elementen van V net zo rekenen als met de reële getallen (m.a.w.
de verzameling V is ook een lichaam). Om er voor te zorgen dat we V kunnen
voorstellen op de getallenlijn moeten we van elk tweetal verschillende elementen
in V zeggen welke het grootst is en welke het kleinst. Dit doen we als volgt:
voor v(x), w(x) 2 V geldt v(x) < w(x) precies dan als er een natuurlijk getal
n bestaat zodat voor alle r 2 R met r > n geldt v(r) < w(r). M.a.w. als de
grafiek van de functie v(x) vanaf een gegeven moment altijd onder de grafiek
van de functie w(x) ligt, dan geldt v(x) < w(x).
Opgave 1.114. (U) Gebruik de hoofdstelling van de algebra om aan te tonen
dat voor elke v, w 2 V geldt v < w, v = w óf v > w.
Opgave 1.115. (U) Plaats op de puntjes het juiste teken: <, >, =.
a) x1 .... 51
x2 7
b) 1000 .... 10
31
2
c) xx+11 .... x 1 1
d) x1 .... 1234 1

e) x1 .... x12
f) x+1
1 .... 1
x 1


Merk op dat het element x1 groter is dan elk reëel getall. Tevens geldt dat x1
kleiner is dan elk positief reëel getal.
Hoewel V een hoop eigenschappen heeft die R ook heeft (beide zijn immers
lineair geordende lichamen), is er toch een zeer belangrijke eigenschap die R
$6.04
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
marjavdwind Erasmus Universiteit Rotterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
120
Miembro desde
5 año
Número de seguidores
87
Documentos
185
Última venta
3 semanas hace
Boekverslagen Econometrie @EUR

Ik ben Marja en heb econometrie aan de Erasmus Universiteit Rotterdam gestudeerd. Inmiddels ben ik klaar met de opleiding en upload ik vooral nog boekverslagen. Ik zit namelijk al meer dan 6 jaar op een leeskring waar we recente Nederlandstalige literatuur lezen. Ik probeer boekverslagen te maken van boeken die net nieuw zijn en dus nog weinig verslagen hebben.

4.1

14 reseñas

5
9
4
1
3
2
2
1
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes