100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

samenvatting - symbolisme vs connectionisme

Puntuación
-
Vendido
-
Páginas
6
Subido en
19-10-2023
Escrito en
2023/2024

Samenvatting van de tekst 'Symbolism vs. Connectionism: A Closing Gap in Artificial Intelligence' door Wang (2017). Over de verschillen tussen symbolische en connectionistische AI.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
19 de octubre de 2023
Número de páginas
6
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

7 - Symbolism vs. Connectionism: A Closing Gap in Artificial Intelligence -
Wang (2017)

Dit paper bespreekt symbolisme en connectionisme:
• Wat zijn symbolische en connectionistische AI?

• Wat zijn de voordelen van symbolische AI? EN van connectionistische AI?
• Hoe beargumenteert de auteur dat het onderscheid tussen symbolische en
connectionistische AI steeds verder vervaagt of zelfs verdwijnt?


- AI: “find how to make machines use language, form abstractions and concepts, solve kinds of
problems now reserved for humans, and improve themselves.” (1956)
→ focused on the symbolic capacities
- central problem of AI: how knowledge is represented, encoded, and processed
- main debate: the dichotomy (contrast) of symbolic and connectionist paradigms
- AGI: artificial general intelligence; human level AI that is capable of completing a wide range
of tasks in an appropriate fashion


- symbolic AI was conceived in the attempt to explicitly represent human knowledge in facts,
rules, and other declarative, symbolic forms
- symbol: a pattern that stands for other things (target can be object, symbol or relation)
- the nature of human language is the organization of signs
→ individual signs have limited ability to convey meanings unless embodied in a sign system
- by abstracting symbols from lower levels to higher levels (physical, cognitive, social,
narrative), we form abstract concepts and find universal meanings


- physical symbol system hypothesis (PSSH): the PSS has the necessary and sufficient
means for general intelligent action, it is the only way toward AGI
- physical symbol system (PSS): a physical computing device for symbol manipulation, which
consists of discrete symbols
- symbols: form expressions, or symbol structures through some sort of physical connections
- physical structures often work as internal representations of the environments and also contain
a set of processes that “operate on expressions to produce other expressions”
→ PSSH implies that the existence of symbolic-level computing in a system is independent of the
physical substrate it operates on


- representation: the mapping from one sign system to another (semiotic morphism)
- knowledge representation: to represent information about the world in a system in a way the
system can employ to store and retrieve old information, infer new knowledge, and perform
complex functions (main problem in AI)

, - symbolic approaches represent knowledge in a highly structured fashion
- the basic units of symbolic representation are symbolic atoms, specific words or concepts
→ this representation paradigm is also called localist as opposed to distributed representation in
connectionist models


- existential graph (EG): symbolic in the sense that it uses individual nodes and arcs to represent
different concepts and their relationships, it captures the aggregate structures of knowledge
- semantic networks: use graphic notations to represent individual objects and categories of
objects
→ the notations include nodes that are connected by labeled links, which represent relations
among objects


- symbolic paradigm is criticized for many reasons, for example: many symbolic structures need
manual coding
→ it is believed that an essential component of intelligence is a physical body that interacts with
the environment through perceptions and behaviors, “grounding” the symbols to the world and
giving them meanings (purely manipulating symbols misses that)
→ intelligence requires non-symbolic processing (but the relationship between symbolic and
non-symbolic prodess is supplement instead of replacement)
→ computers will never be the same as brains (but they both involve computation processes,
both brains and computers are essentially physical symbol systems that can give rise to
intelligence)
- representation-transformation: focuses on information process (instead of computers)
→ Boolean dream: problems explored in symbolic paradigm are too simple from a neural science
point of view, unable to provide rich insight for the computational organization of the brain
- rules can always lead from true statements to other true statements and see thinking
as the manipulations of propositions
→ symbolic models are only succesful at coarse levels, unable to account for the detailed
structure of cognition


- connectionist models refer to bio-inspired networks composed of a large number of
homogenous units and weighted connections among them, analogous to neurons and synapses
in the brain
→ the strengths of the connections reflect how closely the units are linked and can be
strengthened or weakened dynamically by new training data
→ the main task of connectionist paradigm is to tune the weights until the optimum is reached
through techniques like gradient descent


- the signals in the neural nets in brains can be modeled by logic expressions , exhibiting digital
properties
$5.43
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
immederoever

Conoce al vendedor

Seller avatar
immederoever Universiteit van Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
4
Miembro desde
2 año
Número de seguidores
3
Documentos
17
Última venta
2 año hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes