100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary: Cognitive Science, Third Edition, Chapters 7-13

Puntuación
4.3
(7)
Vendido
34
Páginas
31
Subido en
28-10-2017
Escrito en
2017/2018

A summary of chapters 7-13 of the book 'Cognitive Science, an introduction to the study of mind', Third Edition. Part of the course Artificial Intelligence at Utrecht University. The Network Approach - The Evolutionary Approach - The Linguistic Approach - The Emotional Approach - The Social Approach - The Artificial Intelligence Approach - Intelligent Agents and Robots

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
7, 8, 9, 10, 11, 12, 13
Subido en
28 de octubre de 2017
Número de páginas
31
Escrito en
2017/2018
Tipo
Resumen

Temas

Vista previa del contenido

7.​ ​The​ ​Network​ ​Approach

Influenced​ ​by​ ​the​ ​principles​ ​of​ ​operation​ ​and​ ​organization​ ​of​ ​real-world​ ​brains.
Connectionism​​ ​tries​ ​to​ ​understand​ ​how​ ​the​ ​mind​ ​performs​ ​certain​ ​kinds​ ​of​ ​operations​ ​via
the​ ​construction​ ​of​ ​an​ ​artificial​ ​neural​ ​network​ ​(ANN)​​ ​-​ ​a​ ​computer​ ​simulation​ ​of​ ​how
populations​ ​of​ ​actual​ ​neurons​ ​perform​ ​tasks.

Artificial​ ​Neural​ ​Networks
Traditional​ ​computers​ ​are​ ​serial​ ​processors​:​ ​perform​ ​one​ ​computation​ ​at​ ​a​ ​time.​ ​The​ ​brain,
as​ ​well​ ​as​ ​ANNs,​ ​are​ ​parallel​ ​distributed​ ​processors​:​ ​large​ ​numbers​ ​of​ ​computing​ ​units
perform​ ​their​ ​calculations​ ​in​ ​parallel.​ ​Knowledge-based​ ​approach​:​ ​One​ ​conceptualizes​ ​the
problem​ ​and​ ​its​ ​solution​ ​in​ ​terms​ ​of​ ​symbols​ ​and​ ​transformations​ ​on​ ​the​ ​symbols​ ​(used​ ​a​ ​lot
in​ ​AI).​ ​Behavior-based​ ​approach​:​ ​A​ ​network​ ​is​ ​allowed​ ​to​ ​produce​ ​a​ ​solution​ ​on​ ​its​ ​own.
This​ ​does​ ​not​ ​involve​ ​the​ ​use​ ​of​ ​symbols​ ​(ANNs).​ ​Representations​ ​are​ ​inherent​ ​in​ ​ANNs​ ​but
do​ ​not​ ​exist​ ​in​ ​them​ ​in​ ​the​ ​form​ ​of​ ​symbols.​ ​They​ ​exist​ ​in​ ​most​ ​networks​ ​as​ ​a​ ​pattern​ ​of
activation​ ​among​ ​the​ ​network’s​ ​elements​ ​-​ ​distributed​ ​representation​.​ ​Local
representation​:​ ​in​ ​the​ ​form​ ​of​ ​activation​ ​in​ ​a​ ​single​ ​node​ ​in​ ​a​ ​network.
Pro:​​ ​They​ ​are​ ​capable​ ​of​ ​learning​ ​—>​ ​adaptively​ ​change​ ​their​ ​responses​ ​over​ ​time​ ​as​ ​they
are​ ​presented​ ​with​ ​new​ ​information​ ​(but​ ​also​ ​possible​ ​in​ ​machines​ ​that​ ​use​ ​symbolic
methods).

Characteristics​ ​of​ ​ANNs:
● Only​ ​exist​ ​as​ ​software​ ​simulations​ ​that​ ​are​ ​run​ ​on​ ​a​ ​computer
● Each​ ​neuron​ ​is​ ​represented​ ​as​ ​a​ ​node​,​ ​and​ ​the​ ​connections​ ​between​ ​nodes​ ​are
represented​ ​as​ ​links​.
● Signal​ ​node:​ ​activation​ ​value​ ​—>​ ​runs​ ​along​ ​the​ ​link​ ​that​ ​connects​ ​it​ ​to​ ​another
node(s)
● Input​ ​>​ ​threshold​ ​value​ ​—>​ ​fire
● Links​ ​have​ ​weights​:​ ​specify​ ​the​ ​strength​ ​of​ ​a​ ​link.​ ​Higher​ ​value,​ ​higher​ ​weight.

Early​ ​conceptions​ ​of​ ​Neural​ ​Networks
First​ ​researchers​ ​to​ ​propose​ ​how​ ​biological​ ​networks​ ​might​ ​function:​ ​McCulloch​ ​and​ ​Pitts,
1943.​ ​They​ ​assumed​ ​each​ ​neuron​ ​had​ ​a​ ​binary​ ​output,​ ​it​ ​could​ ​either​ ​send​ ​out​ ​a​ ​signal​ ​or
not​ ​send​ ​out​ ​a​ ​signal.​ ​Donald​ ​O.​ ​Hebb​ ​(1949)​ ​was​ ​the​ ​first​ ​to​ ​propose​ ​how​ ​changes​ ​among
neurons​ ​might​ ​explain​ ​learning​ ​—>​ ​Hebb​ ​rule:​ ​when​ ​one​ ​cell​ ​repeatedly​ ​activates​ ​another,
the​ ​strength​ ​of​ ​the​ ​connection​ ​between​ ​two​ ​cells​ ​is​ ​increased.​ ​He​ ​defined​ ​2​ ​types​ ​of​ ​cell
groupings:
1. Cell​ ​assembly:​​ ​a​ ​small​ ​group​ ​of​ ​neurons​ ​that​ ​repeatedly​ ​stimulate​ ​one​ ​another
2. Phase​ ​sequence:​​ ​a​ ​group​ ​of​ ​connected​ ​cell​ ​assemblies​ ​that​ ​fire​ ​synchronously​ ​or
nearly​ ​synchronously
Rosenblatt​ ​introduced​ ​in​ ​1958​ ​the​ ​perceptron​:​ ​neural​ ​nets​ ​designed​ ​to​ ​detect​ ​and​ ​recognize
patterned​ ​information​ ​about​ ​the​ ​world,​ ​store​ ​this​ ​information,​ ​and​ ​use​ ​it​ ​in​ ​some​ ​fashion.
They​ ​also​ ​learn​ ​from​ ​experience:​ ​can​ ​modify​ ​their​ ​connection​ ​strengths​ ​by​ ​comparing​ ​their
actual​ ​output​ ​with​ ​a​ ​desired​ ​output​ ​called​ ​the​ ​teacher​.

Back​ ​Propagation​ ​and​ ​Convergent​ ​Dynamics

,Three​ ​layer​ ​network:
1. Input​ ​layer​​ ​-​ ​a​ ​representation​ ​of​ ​the​ ​stimulus​ ​is​ ​presented
2. Hidden​ ​layer​​ ​-​ ​feeds​ ​activation​ ​energy​ ​to​ ​an​ ​output​ ​layer
3. Output​ ​layer​​ ​-​ ​generates​ ​a​ ​representation​ ​of​ ​the​ ​response
Error​ ​signal:​​ ​the​ ​difference​ ​between​ ​the​ ​actual​ ​and​ ​the​ ​desired​ ​outputs.​ ​The​ ​network​ ​uses
the​ ​error​ ​signal​ ​to​ ​modify​ ​the​ ​weights​ ​of​ ​the​ ​links.​ ​The​ ​kind​ ​of​ ​training​ ​based​ ​on​ ​error
feedback​ ​is​ ​called​ ​the​ ​generalized​ ​delta​ ​rule​​ ​or​ ​the​ ​back-propagation​​ ​learning​ ​model.

NETtalk​​ ​Is​ ​an​ ​ANN​ ​designed​ ​to​ ​read​ ​written​ ​English.​ ​Presented​ ​written​ ​letters​ ​—>
pronounces​ ​them​ ​—>​ ​fed​ ​to​ ​a​ ​speech​ ​synthesizer​ ​for​ ​the​ ​production​ ​of​ ​the​ ​sounds.​ ​System
consists​ ​of​ ​3​ ​layers.

Connectionist​ ​Approach:
Pro​:
● The​ ​similarity​ ​between​ ​network​ ​models​ ​and​ ​real-life​ ​neural​ ​networks:​ b ​ iological
plausibility​.
○ Artificial​ ​Networks​ ​share​ ​general​ ​structural​ ​and​ ​functional​ ​correlates​ ​with
biological​ ​networks
○ Artificial​ ​networks​ ​are​ ​capable​ ​of​ ​learning
○ Artificial​ ​networks​ ​react​ ​to​ ​damage​ ​in​ ​the​ ​same​ ​way​ ​that​ ​human​ ​brains​ ​do:
neural​ ​networks​ ​demonstrate​ ​graceful​ ​degradation​​ ​-​ ​gradual​ ​decrease​ ​in
performance​ ​with​ ​increased​ ​damage​ ​to​ ​the​ ​network.​ ​Small​ ​amounts​ ​of
damage​ ​—>​ ​small​ ​reductions​ ​in​ ​performance.
● Displays​ ​interference​​ ​(2​ ​sets​ ​of​ ​information​ ​are​ ​similar​ ​in​ ​content​ ​and​ ​interfere​ ​with
each​ ​other)​ ​and​ ​generalization​​ ​(represented​ ​by​ ​the​ ​ability​ ​to​ ​apply​ ​a​ ​learned​ ​rule​ ​to
a​ ​novel​ ​situation)
Con​:
● Biological​ ​plausibility​ ​should​ ​also​ ​be​ ​viewed​ ​as​ ​problematic
○ Real​ ​neurons​ ​are​ ​massively​ ​parallel,​ ​it​ ​is​ ​not​ ​yet​ ​possible​ ​to​ ​simulate​ ​parallel
processing​ ​of​ ​this​ ​magnitude.
○ Most​ ​networks​ ​show​ ​a​ ​convergent​ ​dynamics​​ ​approach,​ ​the​ ​activity​ ​of​ ​such​ ​a
network​ ​eventually​ ​dies​ ​down​ ​and​ ​reaches​ ​a​ ​stable​ ​state.​ ​This​ ​is​ ​not​ ​the​ ​case
for​ ​brain​ ​activity.​ ​Real​ ​neural​ ​networks​ ​are​ ​oscillatory​ ​and​ ​chaotic.
● Networks​ ​may​ ​have​ ​inadequate​ ​learning​ ​rules
○ Stability-plasticity​ ​dilemma​:​ ​states​ ​that​ ​a​ ​network​ ​should​ ​be​ ​plastic​ ​enough
to​ ​store​ ​novel​ ​input​ ​patterns;​ ​at​ ​the​ ​same​ ​time,​ ​it​ ​should​ ​be​ ​stable​ ​enough​ ​to
prevent​ ​previously​ ​encoded​ ​patterns​ ​form​ ​being​ ​erased.​ ​The​ ​fact​ ​that​ ​ANNs
show​ ​evidence​ ​of​ ​being​ ​caught​ ​in​ ​this​ ​dilemma​ ​is​ ​useful​ ​because​ ​it​ ​may​ ​offer
some​ ​insights​ ​into​ ​human​ ​interference.
○ Catastrophic​ ​interference:​​ ​occurs​ ​in​ ​instances​ ​in​ ​which​ ​a​ ​network​ ​has
learned​ ​to​ ​recognize​ ​a​ ​set​ ​of​ ​patterns​ ​and​ ​then​ ​is​ ​called​ ​on​ ​to​ ​learn​ ​a​ ​new​ ​set.
The​ ​newly​ ​learned​ ​patterns​ ​suddenly​ ​and​ ​completely​ ​erase​ ​the​ ​network’s
memory​ ​of​ ​the​ ​original​ ​patterns.
○ In​ ​supervised​ ​networks​,​ ​a​ ​“teacher”​ ​is​ ​necessary​ ​for​ ​the​ ​network​ ​to​ ​learn.
But​ ​where​ ​does​ ​this​ ​teacher​ ​come​ ​from?

,Semantic​ ​Networks
In​ ​semantic​ ​networks​​ ​each​ ​node​ ​has​ ​a​ ​specific​ ​meaning​ ​and,​ ​therefore,​ ​employs​ ​local
representation​ ​of​ ​concepts.​ ​Has​ ​been​ ​adopted​ ​by​ ​cognitive​ ​psychologists​ ​as​ ​a​ ​way​ ​to
explain​ ​the​ ​organization​ ​and​ ​retrieval​ ​of​ ​information​ ​in​ ​long-term​ ​memory.

Characteristics​ ​of​ ​Semantic​ ​Networks:
● A​ ​node’s​ ​activity​ ​can​ ​spread​ ​outward​ ​along​ ​links​ ​to​ ​activate​ ​other​ ​nodes,​ ​these​ ​nodes
can​ ​then​ ​activate​ ​still​ ​others:​ ​spreading​ ​activation​.​ ​Is​ ​thought​ ​to​ ​underlie​ ​retrieval​ ​of
information​ ​from​ ​long-term​ ​memory.​ ​Alternate​ ​associations​ ​that​ ​facilitate​ ​recall​ ​are
also​ ​called​ ​retrieval​ ​cues​.
● The​ ​distance​ ​between​ ​two​ ​nodes​ ​is​ ​determined​ ​by​ ​their​ ​degree​ ​of​ ​relatedness.
● Priming​:​ ​the​ ​processing​ ​of​ ​a​ ​stimulus​ ​is​ ​facilitated​ ​by​ ​the​ ​network’s​ ​prior​ ​exposure​ ​to
a​ ​related​ ​stimulus.

Hierarchical​ ​Semantic​ ​Network
Study​ ​by​ ​Collins​ ​and​ ​Quillian​ ​suggests​ ​that​ ​semantic​ ​networks​ ​may​ ​have​ ​a​ h ​ ierarchical
organization​,​ ​with​ ​different​ ​levels​ ​representing​ ​concepts​ ​ranging​ ​from​ ​the​ ​most​ ​abstract
down​ ​to​ ​the​ ​most​ ​concrete.​ ​They​ ​used​ ​a​ ​sentence​ ​verification​​ ​task.
1. Superordinate​​ ​category:​ ​animals​ ​—>​ ​eat​ ​food,​ ​breathe
2. Ordinate​​ ​categories:​ ​birds,​ ​cats​ ​—>​ ​can​ ​fly,​ ​purr
3. Subordinate​​ ​categories:​ ​Canary,​ ​Alleycat​ ​—>​ ​can​ ​sing,​ ​is​ ​yellow
A​ ​canary​ ​is​ ​an​ ​animal​ ​—>​ ​longer​ ​reaction​ ​time​ ​than​ ​‘A​ ​canary​ ​is​ ​a​ ​bird/a​ ​canary’
“isa”​ ​and​ ​“has​ ​a”​ ​link,​​ ​bird​ ​“isa”​ ​animal,​ ​bird​ ​“hasa"​ ​feathers
Con​:
● Concepts​ ​may​ ​be​ ​represented​ ​by​ ​prototypes​​ ​that​ ​represent​ ​generic​ ​or​ ​idealized
versions​ ​of​ ​those​ ​concepts.
● Principle​ ​of​ ​cognitive​ ​economy​:​ ​nodes​ ​should​ ​not​ ​have​ ​to​ ​be​ ​coded​ ​for​ ​more​ ​times
than​ ​is​ ​necessary.​ ​Seems​ ​to​ ​work​ ​better​ ​in​ ​principle​ ​than​ ​in​ ​reality.

Propositional​ ​Semantic​ ​Networks
ACT*​ ​is​ ​a​ ​hybrid​ ​model​:​ ​it​ ​specifies​ ​how​ ​multiple​ ​memory​ ​systems​ ​interact​ ​and​ ​how​ ​explicit
knowledge​ ​is​ ​represented.​ ​A​ ​proposition​ ​is​ ​the​ ​smallest​ ​unit​ ​of​ ​knowledge​ ​that​ ​can​ ​be
verified.​ ​Propositional​ ​networks​ ​allow​ ​for​ ​a​ ​greater​ ​variety​ ​of​ ​relationships​ ​among​ ​concepts.
An​ ​agent​ ​link​​ ​specifies​ ​the​ ​subject​ ​of​ ​the​ ​proposition,​ ​an​ ​object​ ​link​​ ​denotes​ ​the​ ​object​ ​or
thing​ ​to​ ​which​ ​the​ ​action​ ​is​ ​directed.​ ​The​ ​relation​ ​link​​ ​characterizes​ ​the​ ​relation​ ​between​ ​the
agent​ ​and​ ​the​ ​object.​ ​Anderson’s​ ​ACT*​ ​model​ ​can​ ​also​ ​account​ ​for​ ​the​ ​specific​ ​memories
each​ ​of​ ​us​ ​has​ ​as​ ​part​ ​of​ ​our​ ​experience.​ ​His​ ​model​ ​does​ ​this​ ​via​ ​its​ ​creation​ ​of​ ​2​ ​classes​ ​of
nodes:​ ​type​​ ​node;​ ​corresponds​ ​to​ ​an​ ​entire​ ​category​ ​(‘dogs’),​ t​ oken​​ ​nodes;​ ​correspond​ ​to
specific​ ​instances​ ​or​ ​specific​ ​items​ ​within​ ​a​ ​category​ ​(“Fido”).

Semantic​ ​Networks​ ​Evaluation:
Con​:
● T.O.T.​ ​phenomenon​:​ ​‘tip​ ​of​ ​the​ ​tongue’.​ ​Semantic​ ​Networks​ ​cannot​ ​easily​ ​explain
these​ ​sort​ ​of​ ​retrieval​ ​blocks.
● The​ ​opposite;​ ​the​ ​situation​ ​in​ ​which​ ​we​ ​can​ ​successfully​ ​retrieve​ ​an​ ​item​ ​from
memory​ ​despite​ ​the​ ​face​ ​that​ ​there​ ​are​ ​no​ ​close​ ​connections​ ​between​ ​retrieval​ ​cues

, and​ ​the​ ​target.​ ​Multiple​ ​links​ ​that​ ​radiate​ ​outward​ ​toward​ ​other​ ​nodes​ ​-​ ​a​ ​high​ d
​ egree
of​ ​fan​​ ​(eg​ ​water).
● Excessive​ ​activation​ ​—>​ ​solution:​ ​implementation​ ​of​ ​an​ ​inhibitory​ ​network.
● Reconstructive​ ​memory​:​ ​constitutes​ ​a​ ​separate​ ​process​ ​of​ ​retrieving​ ​items​ ​-​ ​one
that​ ​does​ ​not​ ​rely​ ​on​ ​spreading​ ​activation​ ​and​ ​the​ ​inherent,​ ​automatic​ ​characteristics
of​ ​the​ ​network.​ ​Guided​ ​search​​ ​-​ ​one​ ​governed​ ​by​ ​intelligence​ ​and​ ​reasoning​ ​(‘What
did​ ​you​ ​do​ ​on​ ​your​ ​birthday​ ​last​ ​year?’).

Network​ ​Science
Network​ ​science​:​ ​to​ ​explore​ ​the​ ​way​ ​in​ ​which​ ​complex​ ​networks​ ​operate.​ ​A​ ​network​ ​is
considered​ ​as​ ​any​ ​collection​ ​of​ ​interconnected​ ​and​ ​interacting​ ​parts.​ ​It’s​ ​interdisciplinary.
Contemporary​ ​network​ ​scientists​ ​additionally​ ​consider​ ​networks​ ​as​ ​dynamical​ ​systems​ ​that
are​ ​doing​ ​things.​ ​All​ ​networks​ ​share​ ​some​ ​universal​ ​mechanism​ ​of​ ​action.

Centrality
Issue​ ​of​ ​centrality​:​ ​how​ ​a​ ​network​ ​coordinates​ ​information.​ ​This​ ​can​ ​be​ ​accomplished
through​ ​a​ ​“leader”​ ​that​ ​receives​ ​information,​ ​evaluates​ ​it,​ ​and​ ​issues​ ​commands.​ ​Computers,
armies​ ​etc​ ​are​ ​systems​ ​of​ ​this​ ​kind.​ ​But​ ​the​ ​interesting​ ​case​ ​is​ ​how​ ​networks​ ​without​ ​any
such​ ​center​ ​achieve​ ​this​ ​kind​ ​of​ ​coordinated​ ​action.​ ​This​ ​question​ ​has​ ​particular​ ​relevance
for​ ​the​ ​human​ ​mind​ ​—>​ ​Cartesian​ ​theater​ ​and​ ​the​ ​homunculus​ ​problem.​ ​If​ ​we​ ​could​ ​figure
out​ ​the​ ​centrality​ ​issue,​ ​we​ ​might​ ​also​ ​determine​ ​the​ ​answer​ ​to​ ​the​ ​mystery​ ​of
consciousness.​ ​In​ ​some​ ​networks,​ ​coordinated​ ​global​ ​activity​ ​happens​ ​simply​ ​as​ ​a​ ​function
of​ ​spreading​ ​activation​ ​that​ ​disperses​ ​throughout​ ​the​ ​system​ ​quickly​ ​but​ ​which​ ​can​ ​arise
from​ ​any​ ​part​ ​of​ ​it.

Hierarchical​ ​Networks​ ​and​ ​the​ ​Brain
Connections​ ​in​ ​hierarchical​ ​networks​​ ​are​ ​organized​ ​in​ ​different​ ​levels.
1. Simple​ ​cells​:​ ​cells​ ​in​ ​the​ ​primary​ ​visual​ ​cortex​ ​that​ ​code​ ​for​ ​oriented​ ​line​ ​segments
2. Complex​ ​cells​:​ ​cells​ ​in​ ​the​ ​visual​ ​system​ ​that​ ​code​ ​for​ ​an​ ​oriented​ ​line​ ​segment
moving​ ​in​ ​a​ ​particular​ ​direction
3. Hypercomplex​ ​cells​:​ ​cells​ ​in​ ​the​ ​visual​ ​system​ ​that​ ​code​ ​for​ ​angles​ ​(two​ ​conjoined
oriented​ ​line​ ​segments)​ ​moving​ ​in​ ​a​ ​particular​ ​direction
If​ ​we​ ​extrapolate​ ​up​ ​in​ ​the​ ​hierarchy,​ ​we​ ​end​ ​up​ ​with​ ​cells​ ​in​ ​the​ ​highest​ ​layers​ ​that​ ​code​ ​for
large​ ​complex​ ​objects​ ​(“grandmother​ ​cells”).​ ​The​ ​hierarchy​ ​allows​ ​the​ ​visual​ ​system​ ​to
employ​ ​a​ ​“divide-and-conquer”​ ​strategy​ ​where​ ​it​ ​breaks​ ​down​ ​the​ ​complex​ ​visual​ ​image​ ​into
microscopic​ ​features​ ​and​ ​then​ ​assembles​ ​these​ ​features​ ​into​ ​parts​ ​and​ ​then​ ​wholes​ ​that​ ​can
be​ ​recognized.​ ​Communication​ ​between​ ​levels​ ​in​ ​hierarchies​ ​can​ ​allow​ ​for​ ​the​ ​resolution​ ​of
ambiguity​ ​in​ ​visual​ ​perception.​ ​Information​ ​in​ ​the​ ​visual​ ​system​ ​appears​ ​to​ ​travel​ ​in​ ​2
directions.​ ​It​ ​goes​ ​nog​ ​only​ ​in​ ​a​ ​feed-forward​ ​direction​ ​from​ ​the​ ​eye​ ​to​ ​the​ ​brain​ ​but​ ​also​ ​in​ ​a
feedback​ ​direction​ ​from​ ​higher​ ​brain​ ​centers​ ​to​ ​lower​ ​centers.

Small-World​ ​Networks:​​ ​We​ ​can​ ​define​ ​a​ ​small-world​ ​network​​ ​as​ ​any​ ​network​ ​where​ ​one
can​ ​get​ ​from​ ​any​ ​single​ ​point​ ​to​ ​any​ ​other​ ​point​ ​in​ ​only​ ​a​ ​small​ ​number​ ​of​ ​steps​ ​even​ ​though
the​ ​total​ ​number​ ​of​ ​elements​ ​may​ ​be​ ​exceedingly​ ​large.
Ordered​ ​and​ ​Random​ ​Connections:​ ​Random​ ​networks​​ ​are​ ​networks​ ​where​ ​the​ ​connections
are​ ​entirely​ ​local​ ​and​ ​can,​ ​therefore,​ ​be​ ​both​ ​short​ ​and​ ​long​ ​distance.​ ​In​ ​an​ o ​ rdered
$6.76
Accede al documento completo:
Comprado por 34 estudiantes

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los 7 comentarios
4 año hace

4 año hace

5 año hace

5 año hace

6 año hace

7 año hace

8 año hace

4.3

7 reseñas

5
2
4
5
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
KenzaS Universiteit Utrecht
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
203
Miembro desde
9 año
Número de seguidores
128
Documentos
10
Última venta
1 semana hace

4.0

46 reseñas

5
17
4
18
3
9
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes