100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary - Stochastic Modeling period 1 (X_400646)

Puntuación
-
Vendido
1
Páginas
20
Subido en
18-10-2023
Escrito en
2023/2024

This summary includes all material of the first period that is needed for the midterm. The summary includes detailed examples on all topics.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
18 de octubre de 2023
Archivo actualizado en
18 de octubre de 2023
Número de páginas
20
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

Stochastic Modeling X 400646 period 1

Havikja van As

October 18, 2023


Contents
1 Introduction DTMC 2

2 Transient distribution, Hitting time and probabilities 4

3 Communicating classes 7

4 Long-term behaviour 9
4.1 Existence of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Costs 13

6 Exponential distribution 15
6.1 Memorylessness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Total probability law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3 Competing exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 The Poisson Process 17
7.1 Definition 1 via Exponential inter-arrivals . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Definition 2 via Poisson increments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.3 The Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.3.1 Merging and splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.4 Merging and splitting for Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . 19




1

,1 Introduction DTMC
A Discreet Time Markov Chain (DTMC) on a countable state space S that is time-homogeneous.
• is a sequence of random variables {Xn , n = 0, 1, 2, . . . } with values in S,
– n is referred to as time
– Xn is referred to as the state at time n, Xn ∈ S
• which has the Markov property: for all n = 0, 1, 2, . . . , for all i, j, i1 , . . . , in−1 ∈ S,
P (Xn+1 = j|X0 = i0 , X1 = i1 , . . . , Xn−1 in−1 ,Xn = i) = P (Xn+1 = j|Xn = i)
i.e. the history does not influence the future (only the present can influence the future).
• and lastly whose one-step transition probabilities are the same at all times n, P (Xn+1 = j|Xn =
i) =: pij
– P := (pij , i, j ∈ S) is the transition matrix
– a transition diagram depicts the pij ’s on S

Example - machine reliability

Formulate a DTMC of the following situation. A machine can be up(1) or down(0),
• if up today then up tomorrow with a probability of 0.98
• if down today then up tomorrow with a probability of 0.97

Xn := state of the machine on day n
S = {0, 1}

P (X1 = 1|X0 = 1) = P (Up tomorrow given up today) = 0.98
P (X1 = 0|X0 = 1) = P (Down tomorrow given up today) = 1 − 0.98 = 0.02
P (X1 = 1|X0 = 0) = P (Up tomorrow given down today) = 0.97
P (X1 = 0|X0 = 0) = P (Down tomorrow given down today) = 1 − 0.97 = 0.03

The transition diagram:
0.97

0.03 0 1 0.98

0.02
The transition matrix

0.03 0.02
 
P =
0.97 0.98


The Markov property holds since it is implicitly given, that only the present influences the
transition probabilities.

Time-homogeneity holds since the value of n does not influence the transition probabilities.




2

,Example - Harry’s diner

Harry has dinner at either restaurant A or B. His choice depends on the previous two evenings:
• After . . . AA in A wp 0.2
• After . . . BA in A wp 0.4
• After . . . AB in B wp 0.5
• After . . . BB in B wp 0.3

Xn := The restaurant at evening n,
S = {A, B}

Time-homogeneity holds since the value of n does not influence the transition probabilities.

However, the Markov property does not hold because the history influences the future. We
solve this by formulating a new variable:

Yn := {Xn−1 , Xn } and S = {AA, AB, BA, BB}

Now the Markov property does apply since: P (Yn+1 = j|Y0 , Y1 , . . . , Yn ) = P (Yn+1 = j|Yn )

0.2 AA BB 0.3




0.5
0.8 0.7
0.4

0.6

AB BA

0.5




3

, 2 Transient distribution, Hitting time and probabilities
The probability to visit a sequence of states:
P (Xn = in , Xn−1 = in−1 , . . . , X1 = i1 ) = pin−2 in−1 pi1 i2 . . . pin−2 in−1 pin−1 in
Proof.



P (Xn = in , Xn−1 = in−1 , . . . , X1 = i1 ) =P (Xn = in |Xn−1 = in−1 , . . . , X2 = i2 , X1 = i1 , X0 = i0 )∗
P (Xn−1 = in−1 |Xn−2 = in−1 , . . . , X2 = i2 , X1 = i1 , X0 = i0 ) ∗ · · · ∗
P (X2 = i2 |X1 = i1 , X0 = i0 ) ∗ P (X1 = i1 |X0 = i0 )
= P (Xn = in |Xn−1 = in−1 ) ∗ P (Xn−1 = in−1 |Xn−2 = in−2 ) ∗ · · · ∗
P (X2 = i2 |X1 = i1 ) ∗ P (X1 = i1 |X0 = i0 )
= pin−2 in−1 pi1 i2 . . . pin−2 in−1 pin−1 in

n-step transition probabilities:
(n)
pij := P (Xn = j|X0 = i)
Time-homogeneity also applies for n-step transition probabilities, thus:
(n)
P (Xm+n = j|Xm = i) = pij , same for all m.
(n)
Theorem 2.1. The matrix (pij : i, j ∈ S) of n-step transition probabilities is equal to (P n )ij .
The transient distribution at time n is the distribution of Xn , with the following notation:
(n)
πj := P (Xn = j),
(n)
π (n) := rowvector(πj : j ∈ S)


The distribution of π (0) is called the initial distribution of the Markov chain.
Theorem 2.2. The transient distribution at time n is give by π (n) = π (0) P n

Example - machine reliability

• if the machine is up today, what is the probability that it will be up three days from now?
(3)
P (X3 = 1|X0 = 1) = p11 = 0.979798

• if today the machine is up with probability 0.3, what are the chances it will be up on day 3
from now and what is the probability it will be down on day 3 from now?

π (0) = (0.7; 0.3)

π (3) = (P (X3 = 0), P (X3 = 1))
= π (0) P 3
= (0.7 ∗ 0.020203 + 0.3 ∗ 0.020202; 0.7 ∗ 0.979797 + 0.3 ∗ 0.979798)
= (0.0202027; 0.9797973)




4
$12.68
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
havikjavanas

Conoce al vendedor

Seller avatar
havikjavanas Vrije Universiteit Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1
Miembro desde
2 año
Número de seguidores
1
Documentos
2
Última venta
2 año hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes