100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Solutions for Essentials of Econometrics, 5th Edition by Damodar N. Gujarati

Puntuación
-
Vendido
3
Páginas
228
Grado
A+
Subido en
15-10-2023
Escrito en
2023/2024

Complete Solutions Manual for Essentials of Econometrics 5e 5th Edition by Damodar N. Gujarati. Full Chapters Solutions are included. Chapter 1 to 12 - Appendixes Solutions are included. Chapter 1. The Nature and Scope of Econometrics 1.1 What Is Econometrics? 1.2 Why Study Econometrics? 1.3 The Methodology Of Econometrics 1.4 The Road Ahead Key Terms and Concepts Questions Problems Appendix 1A: Economic Data on the World Wide Web PART I. THE LINEAR REGRESSION MODEL Chapter 2. Basic Ideas of Linear Regression: The Two-Variable Model 2.1 The Meaning of Regression 2.2 The Population Regression Function (PRF): A Hypothetical Example 2.3 Statistical or Stochastic Specification of The Population Regression Function 2.4 The Nature of the Stochastic Error Term 2.5 The Sample Regression Function (SRF) 2.6 The Special Meaning of the Term Linear Regression 2.7 Two-Variable Versus Multiple Linear Regression 2.8 Estimation of Parameters: The Method of Ordinary Least Squares 2.9 Putting It All Together 2.10 Some Illustrative Examples 2.11 Summary Key Terms and Concepts Questions Problems Optional Questions Appendix 2A: Derivation of Least Squares Estimators Chapter 3. The Two-Variable Model: Hypothesis Testing 3.1 The Classical Linear Regression Model 3.2 Variances and Standard Errors of Ordinary Least Squares Estimators 3.3 Why OLS? Properties of OLS Estimators 3.4 The Sampling, or Probability, Distributions of OLS Estimators 3.5 Hypothesis Testing 3.6 Hypothesis Testing: Some Practical Aspects 3.7 How Good Is The Fitted Regression Line: The Coefficient of Determination, r2 3.8 Reporting the Results of Regression Analysis 3.9 Illustrative Examples 3.10 Comments on the Illustrative Examples 3.11 Forecasting 3.12 Normality Tests 3.13 Summary Key Terms and Concepts Questions Problems Chapter 4. Multiple Regression: Estimation and Hypothesis Testing 4.1 The Three-Variable Linear Regression Model 4.2 Assumptions of the Multiple Linear Regression Model 4.3 Estimation of the Parameters of Multiple Regression 4.4 Goodness of Fit of Estimated Multiple Regression: Multiple Coefficient of Determination, R2 4.5 Antique Clock Auction Prices Revisited 4.6 Hypothesis Testing In A Multiple Regression: General Comments 4.7 Testing Hypotheses About Individual Partial Regression Coefficients 4.8 Testing the Joint Hypothesis That B2 = B3 = 0 Or R2 = 0 4.9 Two-Variable Regression In the Context of Multiple Regression: Introduction to Specification Bias 4.10 Comparing Two R2 Values: The Adjusted R2 4.11 When to Add an Additional Explanatory Variable to a Model 4.12 Restricted Least Squares 4.13 Illustrative Examples 4.14 Summary Key Terms and Concepts Questions Problems Appendix 4A.1: Derivations of OLS Estimators Appendix 4A.2: Derivation of Equation (4.31) Appendix 4A.3: Derivation of Equation (4.49) Chapter 5. Functional Forms of Regression Models 5.1 How to Measure Elasticity: The Log-Linear Model 5.2 Multiple Log-Linear Regression Models 5.3 How to Measure the Growth Rate: The Semilog Model 5.4 The Lin-Log Model: When the Explanatory Variable Is Logarithmic 5.5 Reciprocal Models 5.6 Polynomial Regression Models 5.7 Regression Through the Origin: The Zero Intercept Model 5.8 A Note on Scaling and Units of Measurement 5.9 Regression on Standardized Variables 5.10 Summary of Functional Forms 5.11 SUMMARY Key Terms and Concepts Questions Problems Appendix 5A: Logarithms Chapter 6. Qualitative or Dummy Variable Regression Models 6.1 The Nature of Dummy Variables 6.2 ANCOVA Models: Regression on One Quantitative Variable and One Qualitative Variable With Two Categories 6.3 Regression on One Quantitative Variable and One Qualitative Variable With More Than Two Classes or Categories 6.4 Regression on One Quantiative Explanatory Variable and More Than One Qualitative Variable 6.5 Comparing Two Regessions 6.6 The Use of Dummy Variables In Seasonal Analysis 6.7 What Happens if the Dependent Variable Is Also a Dummy Variable? The Linear Probability Model (LPM) 6.8 The Logit Model 6.9 Summary Key Terms and Concepts Questions Problems PART II. REGRESSION ANALYSIS IN PRACTICE Chapter 7. Model Selection: Criteria and Tests 7.1 The Attributes of a Good Model 7.2 Types of Specification Errors 7.3 Omisson of Relevant Variable Bias: “Underfitting” a Model 7.4 Inclusion of Irrelevant Variables: “Overfitting” a Model 7.5 Incorrect Functional Form 7.6 Errors of Measurement 7.7 Detecting Specification Errors: Tests of Specification Errors 7.8 Outliers, Leverage, and Influence Data 7.9 Probabity Distribution of the Error Term 7.10 Model Evaluation Criteria 7.11 Nonnormal Distribution of the Error Term 7.12 Fixed Versus Random (or Stochastic) Explanatory Variables 7.13 Summary Key Terms and Concepts Questions Problems Chapter 8. Multicollinearity: What Happens if Explanatory Variables Are Correlated? 8.1 The Nature of Multicollinearity: The Case of Perfect Multicollinearity 8.2 The Case of Near, or Imperfect, Multicollinearity 8.3 Theoretical Consequences of Multicollinearity 8.4 Practical Consequences of Multicollinearity 8.5 Detection of Multicollinearity 8.6 Is Multicollinearity Necessarily Bad? 8.7 An Extended Example: The Demand for Chickens In The United States, 1960 To 1982 8.8 What to Do With Multicollinearity: Remedial Measures 8.9 Summary Key Terms and Concepts Questions Problems Chapter 9. Heteroscedasticity: What Happens if the Error Variance Is Nonconstant? 9.1 The Nature of Heteroscedasticity 9.2 Consequences of Heteroscedasticity 9.3 Detection of Heteroscedasticity: How Do We Know When There Is a Heteroscedasticity Problem? 9.4 What to Do if Heteroscedasticity Is Observed: Remedial Measures 9.5 White’s Heteroscedasticity-Corrected Standard Errors and t Statistics 9.6 Some Concrete Examples of Heteroscedasticity 9.7 Summary Key Terms and Concepts Questions Problems Chapter 10. Autocorrelation: What Happens If Error Terms Are Correlated? 10.1 The Nature of Autocorrelation 10.2 Consequences of Autocorrelation 10.3 Detecting Autocorrelation 10.4 Remedial Measures 10.5 How to Estimate p 10.6 A Large Sample Method of Correcting OLS Standard Errors: The Newey–West (NW) Method 10.7 A General Test of Autocorrelation: The Breusch–Godfrey (BG) Test 10.8 Summary Key Terms and Concepts Questions Problems PART III. ADVANCED TOPICS IN ECONOMETRICS Chapter 11. Elements of Time-Series Econometrics 11.1 The Phenomenon of Spurious Regression: Nonstationary Time Series 11.2 Tests of Stationarity 11.3 Cointegrated Time Series 11.4 The Random Walk Model 11.5 Causality In Economics: The Granger Causality Test 11.6 Summary Key Terms and Concepts Problems Chapter 12. Panel Data Regression Models 12.1 The Importance of Panel Data 12.2 An Illustrative Example: Charitable Giving 12.3 Pooled OLS Regression of the Charity Function 12.4 The Fixed-Effects Least Squares Dummy Variable (LSDV) Model 12.5 Limitations of the Fixed-Effects LSDV Model 12.6 The Fixed-Effects Within-Group (WG) Estimator 12.7 The Random-Effects Model (REM) or Error Components Model (ECM) 12.8 Properties of Various Estimators 12.9 Panel Data Regressions: Some Concluding Comments 12.10 Summary and Conclusions

Mostrar más Leer menos
Institución
Economics
Grado
Economics











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Economics
Grado
Economics

Información del documento

Subido en
15 de octubre de 2023
Número de páginas
228
Escrito en
2023/2024
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Solutions for Essentials of Econometrics 5e Gujarati

APPENDIX
A
REVIEW OF STATISTICS: PROBABILITY AND
PROBABILITY DISTRIBUTIONS

QUESTIONS
A.1. See Sections A.2, A.4, A.5, and A.6.
A.2. No. Notice that a pair of events, A and B, are mutually exclusive if they
cannot occur jointly, that is, P(AB) = 0. Independence, on the other hand,
means that P(AB) = P(A) P(B). Consider this example. Let A = the card is
a heart and B = the card is an ace. A card is drawn from a deck of 52 cards.
We know that P(A) = 1/4 and that P(B) = 1/13. The probability of the event
that a card is both a heart and an ace is P(AB) = 1/52 = P(A) P(B). Hence
the two events are independent. But they are not mutually exclusive
because the ace of hearts could be drawn.
A.3. (a) True, (b) True.
A.4. (a) Yes, they are also collectively exhaustive.
(b) (i) Events E1 and A2 occur together, (ii) events E3 or A3 occur,

(iii) E1 or A1 occur and similarly for the other three combinations;

(iv) events E2 A1 , E3 A2 , E4 A3 occur (Each pair occurs together).
Note that forecasts and actual events need not coincide. It is possible that
E1 was predicted, but the actual growth was A 4 and vice versa.
A.5. PDF relates to a continuous variable and PMF to a discrete variable.
A.6. The CDF of a discrete variable is a step function, whereas that of a
continuous variable is a continuous curve.
P(B| A)P( A)
A.7. Making the substitution, we obtain P( A|B) = . This is simply
P(B)
Bayes’ formula. If we think of A as a possible hypothesis about some
phenomenon, Bayes’ theorem shows how opinions about this hypothesis
held a priori should be modified in light of actual experience. In Bayesian


1

, language, P(A) is known as prior probability and P( A|B) is known as
posterior (or revised) probability.

PROBLEMS
4
A.8. (a) ∑x i −1
= x0 + x + x2 + x3 (Note: x0 = 1).
i =1

6 6
(b) ∑ ay i
= a ∑ y i = a(y 2 + y 3 + y 4 + y 5 + y 6 )
i =2 i =2

2 2 2
(c) ∑(2x i + 3y i ) = 2∑ x i + 3∑ y i = 2(x 1 + x 2 ) + 3(y1 + y 2 )
i =1 i =1 i =1

3 2
(d) ∑∑ x i
y i = x 1 y1 + x 2 y1 + x 3 y1 + x 1 y 2 + x 2 y 2 + x 3 y 2
i =1 j =1

4 4 4
(e) ∑ i + 4 = ∑ i +∑ 4 = (1 + 2 + 3 + 4) + (4)(4) = 26
i =1 i =1 i =1

3
(f) ∑3 i
= 3 + 32 + 33 = 39
i =1

10
(g) ∑ 2 = (2)(10) = 20
i =1

3 3 3
(h) ∑ (4x 2 − 3) = 4 ∑ x 2 − ∑ 3 = 4(12 + 2 2 + 32 ) − (3)(3) = 47
x =1 x =1 x =1



5
A.9. (a) ∑x i
( i from 1 to 5)
i =1

5
(b) ∑i x i
(i from 1 to 5)
i =1

k
(c) ∑(x 2
i
+ y i2 ) (i from 1 to k)
i =1




A.10. (a) [500 (500 + 1)] / 2 = 125,250
100 9
(b) ∑ k − ∑ k = [100 (101)] / 2 – [9 (10)] / 2 = 5,005
1 1




2

, 100
(c) 3∑ k = 3(5,005) = 15,015, using (b) above.
10

A.11. (a) [10 (11)(21)] / 6 = 385
20 9
20(21)(41) 9(10)(19)
(b) ∑ k2 − ∑ k2 = 6

6
= 2,585
1 1

19 10
19(20)(39) 10(11)(21)
(c) ∑k − ∑k 2 2
=
6

6
= 2,085
1 1

10
(d) 4 ∑ k 2 = 4(385) = 1,540, using (a) above.
1




A.12. (a) Since ∑ f(X ) = 1, (b + 2b + 3b + 4b + 5b) = 15b = 1. Therefore, we
have b = 1/15.
(b) P(X ≤ 2) = 6/15; P(X ≤ 3) = 10/15; P(2≤ X ≤ 3) = 4/15


A.13. (a) Marginal distributions:


X 1 2 3 Y 1 2 3 4
f(X) 0.20 0.40 0.40 f(Y) 0.15 0.10 0.45 0.30


(b) Conditional distributions:


f(X|Y) f(Y|X)
P(X = 1 | Y = 1) = 0..15 = 0.20 P(Y = 1 | X = 1) = 0..20 = 0.15
P(X = 2 | Y = 1) = 0..15 = 0.40 P(Y = 2 | X = 1) = 0..20 = 0.10
P(X = 3 | Y = 1) = 0..15 = 0.40 P(Y = 3 | X = 1) = 0..20 = 0.45
………. P(Y = 4 | X = 1) = 0..20 = 0.30
………. ……….


The remaining conditional distributions can be derived similarly.


A.14. Let B represent the event that a person reads the Wall Street Journal and let




3

, A1, A2, and A3 denote, respectively, the events a Democrat, a Republican,
and an Independent. We want to find out P(A2 |B) :

P(B| A2 )P(A2 )
P(A2 |B) =
P(B| A2 )P(A2 ) + P(B| A1 )P(A1 ) + P(B| A3 )P(A3 )

(0.6)(0.4)
= = 0.558
(0.6)(0.4) + (0.3)(0.5) + (0.4)(0.1)
Note that the prior probability of sampling a Republican is 0.4 or 40%. But
knowing that someone is found reading the Wall Street Journal, the
probability of sampling a Republican increases to 0.558 or 55.8%. This
makes sense, for it has been observed that proportionately more
Republicans than Democrats or Independents read the Journal. This
example is an illustration of Bayes’ Theorem.

A.15. This is P ( A + B ) or P(A ∪ B) = 0.9.


A.16. (a) No, for the probability that this happens is 0.2 and not zero.
(b) Let A denote having children and B denote work outside home. If these
two events are to be independent, we must have P(AB) = P(A) P(B). In the
present case, P(AB) = 0.2 and P(A) = 0.5 and P(B) = 0.6. Since in this case
P(AB) ≠ P(A) P(B), the two events are not independent.

A.17. From Table A-9, it can be seen that


X Below poverty Above poverty f(Y) 
Y
White 0.0546 0.6153 0.6699
Black 0.0315 0.0969 0.1284
Hispanic 0.0337 0.1228 0.1565
Asian 0.0046 0.0406 0.0452
f(X)  0.1244 0.8756 1.00




4
$29.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
StepsSol Business Fellows
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
3572
Miembro desde
2 año
Número de seguidores
1301
Documentos
788
Última venta
7 horas hace
StepsSol

We are here to support you every step of the way in your academic journey, whether it\'s test practice, homework assistance, research guidance, data analysis, or any other form of reliable tutoring you require. Our primary goal is to provide our students with top-notch education that paves the way for excellent grades. Please don\'t hesitate to reach out with any questions, and we welcome your suggestions.

4.3

456 reseñas

5
299
4
73
3
38
2
13
1
33

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes