100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Lecture Notes/College aantekeningen Research Methods in Communication Science (S_RPPS)

Puntuación
4.0
(1)
Vendido
15
Páginas
52
Subido en
13-10-2023
Escrito en
2023/2024

Lecture Notes/College aantekeningen Research Methods in Communication Science (S_RPPS)

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
13 de octubre de 2023
Número de páginas
52
Escrito en
2023/2024
Tipo
Notas de lectura
Profesor(es)
Dimitris pavlopoulos
Contiene
Todas las clases

Temas

Vista previa del contenido

Research Methods in Communication With this estimation we can also define the
Science residuals:
Lecture 1: Introduction and linear
regression
Example wages and education
The residuals show how bad our estimation
is!
• Y hat = what model says
• Y = what reality is
• B0/B1 hat = things that come out of
your model
• B0 is the point where the line
crosses the Y axis
Scatterplot, for seeing the relationship • B1 is the slope
between 2 continuous variables
Regression results




- Intercept is B0
- Dependent variable = wage
- B0 = 4.97 expected wage if educ =
0
Simple regression - B1 = 0.79 increase in wage if
education increases by 1 year
Our model (= approximation of reality) is:
Wage = 4.97 + .079 * educ
Significance – is the coefficient
We don’t observe B0, B1 nor Ei
statistically different from 0?
Instead we estimate them along with the
dependent variable: - B0: t = 9.305, p < 0.000 → it is!
- B1: t = 20.284, p < 0.000 → it is!

,Generally, the interpretations of b are On residuals
- B0 expected Y (Y hat) if X = 0 To answer that question we need to
- B1 change in Y hat if X increases understand better what residuals are
in 1 unit
We assume that they:
Standardized regression
- Have mean zero
We might actually want a standardizes - Are not related with X
regression. Why?
We’ll see that the behavior of their
- Sometimes X = 0 doesn’t make a variance is very important too!
lot of sense. E.g. age = 0
What are they conceptually?
- B1 depends on the units of X which
makes it difficult to interpret - The part of Y not explained by X;
how far is our prediction of Y from
How does the standardized regression
the real Y
works?
Example
- We replace Y and X with their
standardized (Z) versions
- Remember that:


- Zx and Zy have mean 0 and
standard deviation (sd) 1
We can write this regression as


What happens now?
- Since both variables have mean 0
→ B0 = 0
- Our new coefficient interpretation
is that if X increases by 1 unit sd, Regression line
then Y increases by B1 sd’s The sum of the residuals is expected to be
Regression line 0

There are many possible lines → which We define the regression line by making
one should we draw? Worded differently, ALL the residuals as low as possible!
which Bhat0 and Bhat1 ‘fit’ best our data? Should we reduce
We need to construct the line that best - Not really, remember that there are
approximates reality positive and negative residuals
- They might cancel out

,To avoid this issue we will square the sum: The TSS can be easily seen when we
predict Y only with its average
- It’s the sum of the square distance
- This is termed the Residual Sum of
in the plot!
Squares (RSS)
- Least Squares Method = Besides the totals, sometimes is useful to
minimizing the RSS seen the mean errors
Splitting the Sum of Squares - To do this we divide by the degrees
of freedom
The total variance of Y is…
Degrees of freedom = number of
independent pieces of information used to
- Practically: the ‘error’ you make calculate a statistic
when predicting Y with Yflathat
- Formally: how much variance of Y
is there to explain K = the number of independent variables
The variance of Y which CAN be N = sample
explained by X is…

= the mean squared total error
- Practically: what the regression
The square root of the
explains
is also referred as RMSE
The variance of Y which CANNOT be
explained by X is… - It’s one of the most common
measures of regression quality!
Coefficient of determination R-squared
- Practically: what the regression
does NOT explain R2 is the percentage (between 0 and 1) of
the total variance that is explained by the
regression…
How can we see these results?



So, the percentage of unexplained
RSS = 756.5755 SSE = 8451.138 TSS = variance is…
9207.713
We can also see the SSE in the ANOVA
table

, Residuals and regression quality Lecture 2: Multiple Regression
Keep in mind that we assumed linearity In multiple regression our interest is to
explain Y as a function of several
- The conditional means of Y are
independent variables
best shown in a line
- In other words: we assume that The new model can be written as


Back to the example: let’s explain wage by
What if I don’t have linearity (see plot with education and age
conditional means in red below)?
Causality
- MSE is not an appropriate measure
We are interested in the question: is there a
for assessing the regression quality
causal effect of X on Y?
Requirements for causality
- X and Y are associated
- X (independent) is realized earlier
than Y (dependent)
- We have excluded all other
alternative explanations of Y
Multiple regression aim
Keep in mind that…

As we will see assumption are very - Correlation does not imply
important in regression! causation
- The third requirement for causation
is the most difficult to fulfil
We use multiple regression because we
want to comply with the third requirement
We exclude alternative explanations by
controlling for several variable.
- However, it’s not that simple
We should think about controls in multiple
regression falling within three cases or
scenarios
$8.01
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los comentarios
1 año hace

4.0

1 reseñas

5
0
4
1
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Evu8 Vrije Universiteit Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
56
Miembro desde
3 año
Número de seguidores
34
Documentos
19
Última venta
1 semana hace

4.3

7 reseñas

5
3
4
3
3
1
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes