100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

ISYE 6501 -Exam 2 QUESTIONS WITH 100% VERIFIED SOLUTIONS LATEST UPDATE 2023/2024

Puntuación
-
Vendido
-
Páginas
9
Grado
A+
Subido en
06-10-2023
Escrito en
2023/2024

ISYE 6501 -Exam 2 QUESTIONS WITH 100% VERIFIED SOLUTIONS LATEST UPDATE 2023/2024 Building simpler models with fewer factors helps avoid which problems? A. Overfitting B. Low prediction quality C. Bias in the most important factors D. Difficulty in interpretation - ANSWER A. Overfitting D. Difficulty of interpretation Two main reasons to limit # of factors in a model. - ANSWER 1. Overfitting 2. Simplicity When is overfitting likely to happen? - ANSWER When the number of factors is close to the number of data points. How does using a # of factors that is close to the number of data points cause overfitting? - ANSWER The model too closely fits the random efffects. It fits that data set well, but fails to predict well on a new data set. Three reasons simple models are better than complex models. - ANSWER 1. Less data is required 2. Less chance of including insignificant factors 3. Easier to interpret Which of these is a key difference between stepwise regression and lasso regression? A. Lasso regression requires the data to first be scaled B. Stepwise regression gives many models to choose from, while lasso gives just one. - ANSWER A. If the data isn't scaled, the coefficients can have artificially different orders of magnitude, which means they'll have unbalanced effects on the lasso constraint. Name three greedy approaches to variable selection. - ANSWER 1. Forward Selection 2. Backward Elimination 3. Stepwise Regression Name two global approaches to variable selection. - ANSWER 1. Lasso 2. Elastic Net What does a greedy approach to variable selection mean? - ANSWER At each step, the model does one thing that looks best without taking future options into consideration. A more classical approach. How does forward selection differ from backward elimination? - ANSWER Forward selection starts with zero factors and backward elimination starts with all factors. What is stepwise regression? - ANSWER A combination of forward selection and backward elimination. At each step, a variable is considered for addition or elimination based on some prespecified criterion. Name two approaches to use with stepwise regression. - ANSWER 1. Start with all factors 2. Start with no factors What restriction does the lasso approach add? - ANSWER The sum of the coefficients can't be too large. "t" How does lasso use the t value? - ANSWER It uses that on the most important coefficients and the others will be zero so those factors won't be part of the model. What do you need to with the data whenever you're constraining the sum of coefficients? - ANSWER Scale the data. The value of t in the lasso approach depends on what two things? - ANSWER 1. The number of variables you want. 2. The quality of the model as you allow more variables What is the best approach to find the best value of t with lasso? - ANSWER Try lasso with different values of t and pick the value that has the best tradeoff between number of variables and quality of the model. What constraint does Elastic Net add? - ANSWER Elastic Net constrains the absolute value of the coefficients and their squares. Name two things similar about Lasso and Elastic Net. - ANSWER 1. You have to scale the data for both. 2. You have to pick the best value of t for both. Do you have to scale the data for Elastic Net? - ANSWER Yes What change can you make to elastic net to get a model called ridge regression? - ANSWER Remove the absolute value term. Does ridge regression do variable selection? - ANSWER No. What is the advantage of ridge regression? - ANSWER It can lead to better predictive models. When two predictors are highly correlated, which of the following statements is true? A. Lasso regression will usually have non-zero coefficients for both predictors. B. Ridge regression will usually have non-zero coefficients for both predictors. - ANSWER B. Ridge regression will choose smaller (in an absolute sense) non-zero coefficients for both models. By nature, it may underestimate the effect of the factors. Which variable selection methods are good for initial analysis? - ANSWER Forward selection Backward elimination Stepwise regression What is one of the drawbacks to forward selection, backward elimination and stepwise regression? - ANSWER They can give you a set of variables that fit more to random effects than you would like and it appears you have a better fit than you do. What is the advantage to Lasso and elastic net? - ANSWER They tend to give better predictive models, but are slower to compute. Which methods are combined to make up Elastic Net? - ANSWER Lasso and Ridge regression

Mostrar más Leer menos
Institución
ISYE 6501
Grado
ISYE 6501









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
ISYE 6501
Grado
ISYE 6501

Información del documento

Subido en
6 de octubre de 2023
Número de páginas
9
Escrito en
2023/2024
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

$10.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
osorebrilliant Teachme2-tutor
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
453
Miembro desde
2 año
Número de seguidores
368
Documentos
4719
Última venta
1 semana hace
EXCELLENT HOMEWORK HELP AND TUTORING ,ALL KIND OF QUIZ AND EXAMS WITH GUARANTEE OF A EXCELLENT HOMEWORK HELP AND TUTORING ,ALL KIND OF QUIZ AND EXAMS WITH GUARANTEE OF A Am an expert on major courses especially; psychology,Nursing, Human resource Manageme

EXCELLENT HOMEWORK HELP AND TUTORING ,ALL KIND OF QUIZ AND EXAMS WITH GUARANTEE OF A EXCELLENT HOMEWORK HELP AND TUTORING ,ALL KIND OF QUIZ AND EXAMS WITH GUARANTEE OF A Am an expert on major courses especially; psychology,Nursing, Human resource Management and Mathemtics Assisting students with quality work is my first priority. I ensure scholarly standards in my documents and that\'s why i\'m one of the BEST GOLD RATED TUTORS in STUVIA. I assure a GOOD GRADE if you will use my work.

Lee mas Leer menos
3.6

76 reseñas

5
32
4
13
3
13
2
3
1
15

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes