100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

MAT3701 LINEAR ALGEBRA III January/February 2021

Puntuación
-
Vendido
-
Páginas
12
Grado
A+
Subido en
02-10-2023
Escrito en
2023/2024

MAT3701 LINEAR ALGEBRA III January/February 2021

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
2 de octubre de 2023
Número de páginas
12
Escrito en
2023/2024
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

UNIVERSITY EXAMINATIONS UNIVERSITEITSEKSAMENS




MAT3701 January/February 2021

LINEAR ALGEBRA III
Duration : 2 Hours 100 Marks

EXAMINERS :
FIRST : PROF JD BOTHA EXTERNAL : PROF LM PRETORIUS



This is an open book examination. The examination question paper remains the property of the University of South Africa.


This examination question paper consists of 3 pages.

The exam is IRIS invigilated. This requires that IRIS be activated at the start of the exam and kept on for the full duration of the
exam. The originality of submissions will also be verified with Turnitin.

Answer all the questions and show all calculations. Since this is an open book examination, if the solution to a similar question is
given, no marks will be awarded.

Please stop writing at the end of the official exam period.You then have one hour in which to scan your answer sheets (please
number the pages clearly and write your student number and module code on the front page) and submit it as a pdf file under the
name studentnumber MAT3701 on this, the myExams platform. No submissions will be accepted after the additional one
hour uploading period.




TO UPLOAD YOUR ANSWER FILE
1. When you have finished writing and created a pdf answer file, go to Submission on the Exam site and under Attachments,
click the Choose file button next to Select a file from computer. Then browse your computer for your answer file and
select it for uploading. Remember to submit your answer file as a pdf file under the name studentnumber MAT3701.
2. Once you have attached your answer file, the name of the file as well as the file size and upload time stamp will bedisplayed
under Attachments.
3. Tick the “Honour Pledge” button if you agree.
4. Click the “Submit” button.
5. After you have finished uploading your answer file, click on the “Submit” button on the IRIS pop-up screen. IRIS willthen upload
your session recording files. Remember not to close the window until IRIS is finished.
2 MAT3701
January/February 2021


QUESTION 1

Let T : V → V be a linear operator on a finite-dimensional vector space V over C such that T2 = I.

(1.1) Show that R(T + I) ⊆ N(T − I) and R(T − I) ⊆ N(T + I). (5)

(1.2) Show that V = R(T + I) + R(T − I). (6)

For more information. Email:

, (1.3) Show that V = R(T + I) ⊕ R(T − I). (5)
[16]



QUESTION 2

Consider the vector space V = C2 with scalar multiplication over the real numbers R, and let T : V → V be the linear
operator defined by
T (z1,z2) = (z1 − iz2,z2 − z2).
Use the Diagonalisability Test to explain whether or not T is diagonalisable. (Note that V is a vector space of
dimension 4 over R.)
[15]



QUESTION 3

Let fa,fb,fc ∈ P2(R) denote the Lagrange polynomials associated with the distinct real numbers a,b,c respectively. Let T :
P2(R) → P2(R) denote the projection on V = span{fa + fb,fb + fc} along W = span{fa + fc}.

(3.1) Find the matrix representation of T with respect to β = {fa,fb,fc}. (16)

(3.2) Find a formula for T(g) expressed as a linear combination of β where g ∈ P2(R). (8)
[24]



QUESTION 4

Let V be an inner product space over R with orthonormal basis β = {v1,v2,v3}, and let W = span{v1+v2,v2+v3}.

(4.1) Show that (5)

ha1v1 + a2v2 + a3v3,b1v1 + b2v2 + b3v3i = a1b1 + a2b2 + a3b3 for all a1,a2,a3,b1,b2,b3 ∈ R.


(4.2) Find a basis for W⊥ expressed in terms of β. (7)

(4.3) Find the vector in W closest to 3v2. (7)
[19]




[TURN OVER]



3 MAT3701
January/February 2021


QUESTION 5

Consider the inner product space P2 (R) over R with h·,·i defined by
For more information. Email:
$3.50
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
morrisacademiamorrisa Bloomsburg University Of Pennsylvania
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
36
Miembro desde
2 año
Número de seguidores
21
Documentos
287
Última venta
3 semanas hace
Pro EXAMS

Welcome, Get legit and latest practice papers, HESI REVISIONS, AQAs, ACT exams, etc.

3.3

4 reseñas

5
2
4
0
3
0
2
1
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes