100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

MAT3701: LINEAR ALGEBRA III May/June 2020

Puntuación
-
Vendido
-
Páginas
24
Grado
A+
Subido en
02-10-2023
Escrito en
2023/2024

MAT3701: LINEAR ALGEBRA III May/June 2020

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
2 de octubre de 2023
Número de páginas
24
Escrito en
2023/2024
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

UNIVERSITY EXAMINATIONS UNIVERSITEITSEKSAMENS




MAT3701 May/June 2020

LINEAR ALGEBRA III
Duration : 3 Hours 100 Marks

EXAMINERS :
FIRST : PROF JD BOTHA EXTERNAL : PROF LM PRETORIUS



This is an open book examination. The examination question paper remains the property of the University of South Africa.


This examination question paper consists of 3 pages.

Answer all the questions and show all calculations. Please read the questions carefully.
Since this is an open book examination, if the solution to a similar question is given, no marks will be awarded. The originality
of submissions will be verified by the software Turnitin.

TO UPLOAD YOUR ANSWER FILE
1. Access the myExams site at https://myexams.unisa.ac.za/portal and login using your student number and myUnisa password.
2. Click on the site MAT3701 Exam May 2020 (in the horizontal navigation bar at the top or click on the Sites button at the
top right-hand corner and select the site from the drop-down menu).
3. Once the site has loaded, click on eAssessment in the left navigation menu.
4. A page with the heading “Assignment List” will appear. Click on MAT3701 MayJune Exam 2020 under “Assignment Title”.
5. A new page will open. Under Attachments, click Choose file next to Select a file from computer. Now browse your
device for your answer file and select it for uploading. Remember, the file should be in pdf format and the name of the file
should be in the format Studentnumber MAT3701.
7. Once you have attached your answer file, the name of the file as well as the file size and upload time stamp will be displayed
under Attachments.
6. Tick the “Honour Pledge” button if you agree.
7. Click the “Submit” button.
2 MAT3701
May/June 2020


QUESTION 1


Let and consider the following subspaces of M2×2 (C) defined by
W1 = {X ∈ M2×2 (C) : AX = XA} and W2 = {X ∈ M2×2 (C) : AX = X}.

(1.1) Find a basis for W1. (8)

(1.2) Find a basis for W1 ∩ W2. (8)

(1.3) Explain whether M2×2 (C) = W1 ⊕ W2. (1)
[17]


For more information. Email:

, QUESTION 2

Let T : C3 → C3 be a linear operator such that T2 = T and dim(N(T)) = 2. Show there exists a basis β for C3


such that [ where b,c ∈ C.
[15]


QUESTION 3

Let
1


andw = 00 .

0
Let T : R4 → R4 be the linear operator defined by T(x) = Ax and let W be the T–cyclic subspace of R4 generated by w.

(3.1) Find the T–cyclic basis for W generated by w. (8)

(3.2) Find the characteristic polynomial of TW. (2)

(3.3) For each eigenvalue of TW, find a corresponding eigenvector expressed as a linear combination of the (8) T-
cyclic basis for W.
[18]


QUESTION 4

Consider the inner product space P2 (R) over R with h·,·i defined by
hg,hi = g (a)h(a) + g(b)h(b) + g (c)h(c)
where a, b and c are distinct real numbers. Let β = {fa, fb, fc} be the set of Lagrange polynomials associated with a, b
and c respectively, and let P : P2 (R) → P2 (R) be the orthogonal projection on W = span .

(4.1) Show that ha1fa + b1fb + c1fc,gi = a1g(a) + b1g(b) + c1g(c) for all a1,b1,c1 ∈ R and g ∈ P2(R). (6)

(4.2) Show that is orthonormal. (7)
(4.3) Find a formula for P(g) expressed as a linear combination of β. (7)
[20]



[TURN OVER]


3 MAT3701
May/June 2020


QUESTION 5

Let T : V → V be a linear operator on a finite-dimensional inner product space V over C.

(5.1) Define what is meant by the adjoint operator T∗ of T. (2)

(5.2) Define what is meant by a normal operator T. (2)

For more information. Email:

, (5.3) If T is normal, show that kT(v)k = kT∗(v)k for all v ∈ V . (5)

(5.4) Suppose V = C3 and T : C3 → C3 is defined by T (z1,z2,z3) = (z1 + iz2 − iz3,−iz1, iz1 + iz3). Find (9) a formula for T∗
(z1,z2,z3).
[18]



QUESTION 6

It is given that A ∈ M3×3 (C) is a normal matrix with eigenvalues 1 and −1 and corresponding eigenspaces


E1 = span

and

E−1 = span .

(6.1) Find the spectral decomposition of A. (11)

(6.2) Find A. (1)
[12]

TOTAL MARKS: [100]

c

UNISA 2020




For more information. Email:
$3.50
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
morrisacademiamorrisa Bloomsburg University Of Pennsylvania
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
36
Miembro desde
2 año
Número de seguidores
21
Documentos
287
Última venta
3 semanas hace
Pro EXAMS

Welcome, Get legit and latest practice papers, HESI REVISIONS, AQAs, ACT exams, etc.

3.3

4 reseñas

5
2
4
0
3
0
2
1
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes