100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Linear Algebra Summary

Puntuación
-
Vendido
-
Páginas
39
Grado
A+
Subido en
02-10-2023
Escrito en
2023/2024

Linear Algebra Summary

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
2 de octubre de 2023
Número de páginas
39
Escrito en
2023/2024
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

lOMoARcPSD|6392334




Linear Algebra Summary
P. Dewilde K. Diepold

October 21, 2022



Contents
1 Preliminaries .......................................................................................................................................... 2

1.1 Vector Spaces ......................................................................................................................................... 2

1.2 Bases ...................................................................................................................................................... 4

1.3 Matrices ................................................................................................................................................. 5

1.4 Linear maps represented as matrices ................................................................................................. 6

1.5 Norms on vector spaces...................................................................................................................... 11

1.6 Inner products ..................................................................................................................................... 13

1.7 Definite matrices ................................................................................................................................. 14

1.8 Norms for linear maps ........................................................................................................................ 14

1.9 Linear maps on an inner product space ............................................................................................ 14

1.10 Unitary (Orthogonal) maps .............................................................................................................. 15

1.11 Norms for matrices ........................................................................................................................... 15

1.12 Kernels and Ranges .......................................................................................................................... 16

1.13 Orthogonality .................................................................................................................................... 17

1.14 Projections......................................................................................................................................... 17

1.15 Eigenvalues and Eigenspaces ........................................................................................................... 18

2 Systems of Equations, QR algorithm ................................................................................................ 19

2.1 Jacobi Transformations ...................................................................................................................... 19




For more information. Email:

, lOMoARcPSD|6392334




2.2 Householder Reflection ...................................................................................................................... 20

2.3 QR Factorization .................................................................................................................................. 20

2.3.1 Elimination Scheme based on Jacobi Transformations................................................................. 20

2.3.2 Elimination Scheme based on Householder Reflections............................................................... 21

2.4 Solving the system Tx = b.................................................................................................................... 22

2.5 Least squares solutions ...................................................................................................................... 22

2.6 Application: adaptive QR .................................................................................................................... 24

2.7 Recursive (adaptive) computation .................................................................................................... 25

2.8 Reverse QR........................................................................................................................................... 27

2.9 Francis’ QR algorithm to compute the Schur eigenvalue form ........................................................ 28

3 The singular value decomposition - SVD......................................................................................... 30

3.1 Construction of the SVD...................................................................................................................... 30

3.2 Singular Value Decomposition: proof ................................................................................................ 31

3.3 Properties of the SVD .......................................................................................................................... 32

3.4 SVD and noise: estimation of signal spaces ...................................................................................... 34

3.5 Angles between subspaces ................................................................................................................. 37

3.6 Total Least Square - TLS ..................................................................................................................... 37


1 Preliminaries
In this section we review our basic algebraic concepts and notation, in order to establish a common
vocabulary and harmonize our ways of thinking. For more information on specifics, look up a basic
textbook in linear algebra [1].


1.1 Vector Spaces

A vector space X over R or over C as ’base spaces’ is a set of elements called ’vectors on which
’addition’ is defined with its normal properties (the inverse exists as well as a neutral element called
zero), and on which also ’multiplication with a scalar’ (element of the base space is defined as well,
with a slew of additional properties.




For more information. Email:

, lOMoARcPSD|6392334




Concreteexamplesarecommon:
z


1
-3
5
in R 3 : −3
1 5 x




y
5+ j
in C 3: − 3 − 6j ≈ R6
2+2 j

The addition of vectors belonging to the same Cn (Rn) space is defined as:




and the scalar multiplication: a ∈ R or a ∈ C:




Example

The most interesting case for our purposes is where a vector is actually a discrete time sequence {x(k)
: k = 1···N}. The space that surrounds us and in which electromagnetic waves propagate is mostly
linear. Signals reaching an antenna are added to each other.


Composition Rules:

The following (logical) consistency rules must hold as well: x
+ y = y + x commutativity
(x + y) + z = x + (y + z) associativity
0 neutral element x + (−x)
= 0 inverse
distributivity of ∗ w.r. + consistencies



Vector space of functions




For more information. Email:

, lOMoARcPSD|6392334




Let X be a set and Y a vectorspace and consider the set of functions


X → Y.

We can define a new vectorspace on this set derived from the vectorspace structure of Y:


(f1 + f2)(x) = f1(x) + f2(x)

(af)(x) = af(x).

Examples:
(1)
f1 f2
+ = f1 + f2




(2)


+ =




[x 1 x 2 ··· x n ]+[ y 1 y 2 ··· y n ]=[ x 1 + y 1 x 2 + y 2 ··· x n + y n ]


As already mentioned, most vectors we consider can indeed be interpreted either as continous time
or discrete time signals.


Linear maps

Assume now that both X and Y are vector spaces, then we can give a meaning to the notion ’linear
map’ as one that preserves the structure of vector space:

f(x1 + x2) = f(x1) + f(x2) f(ax) =

af(x)

we say that f defines a ’homomorphism of vector spaces’.


1.2 Bases

We say that a set of vectors {ek} in a vectorspace form a basis, if all its vectors can be expressed as a
unique linear combination of its elements. It turns out that a basis always exists, and that all the bases
of a given vector space have exactly the same number of elements. In Rn or Cn the natural basis is given
by the elements
0


For more information. Email:
$2.50
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
morrisacademiamorrisa Bloomsburg University Of Pennsylvania
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
36
Miembro desde
2 año
Número de seguidores
21
Documentos
287
Última venta
3 semanas hace
Pro EXAMS

Welcome, Get legit and latest practice papers, HESI REVISIONS, AQAs, ACT exams, etc.

3.3

4 reseñas

5
2
4
0
3
0
2
1
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes