100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

SOLUTION MANUALS FOR CALCULUS EARLY TRANSCENDENTALS 9th EDITION BY JAMES STEWART, DANIEL K. CLEGG & SALEEM WATSON

Puntuación
-
Vendido
1
Páginas
203
Grado
A+
Subido en
29-09-2023
Escrito en
2023/2024

SOLUTION MANUALS FOR CALCULUS EARLY TRANSCENDENTALS 9th EDITION BY JAMES STEWART, DANIEL K. CLEGG & SALEEM WATSON 2023/2024 / GRADED A+. 1 FUNCTIONS AND MODELS 1.1 Four Ways to Represent a Function 1. The functions () =  + √ 2 − and () =  + √ 2 − give exactly the same output values for every input value, so and are equal. 2. () =2 −   − 1 = ( − 1)  − 1 = for  − 1 6= 0, so and [where () = ] are not equal because  (1)is undefined and (1) = 1. 3. (a) The point (−2 2)lies on the graph of, so (−2) = 2. Similarly,  (0) = −2,  (2) = 1, and  (3)  2. 5 (b) Only the point (−4 3)on the graph has a value of 3, so the only value offor which () = 3is −4 . (c) The function outputs (are never greater than 3, so ) () ≤ 3for the entire domain of the function. Thus,() ≤ 3for −4 ≤  ≤ 4 (or, equivalently, on the interval[−4 4]). (d) The domain consists of all values on the graph of : { | −4 ≤  ≤ 4} = [−4 4]. The range of consists of all the values on the graph of : { | −2 ≤  ≤ 3} = [−2 3]. (e) For any 1   2 in the interval [0 2] , we have (1)  (2). [The graph rises from (0 −2)to (2 1).] Thus, (is) increasing on [0 2] . 4. (a) From the graph, we have (−4) = −2 and (3) = 4. (b) Since (−3) = −1 and (−3) = 2, or by observing that the graph ofis above the graph ofat  = −3, (−3)is larger than (−3). (c) The graphs of and intersect at  = −2 and  = 2, so  () = (at these two values of ) . (d) The graph of lies below or on the graph offor −4 ≤  ≤ −2 and for 2 ≤  ≤ 3. Thus, the intervals on which  () ≤ (are) [−4 −2]and [2 3] . (e)  () = −1is equivalent to = −1, and the points on the graph ofwith values of −1 are (−3 −1)and (4 −1), so the solution of the equation() = −1is  = −3 or  = 4. (f) For any 1  2 in the interval [−4 0], we have (1)  ( 2 ). Thus, (is decreasing on ) [−4 0]. (g) The domain of is { | −4 ≤  ≤ 4} = [−4 4]. The range of is { | −2 ≤  ≤ 3} = [−2 3]. (h) The domain of is { | −4 ≤  ≤ 3} = [−4 3]. Estimating the lowest point of the graph ofas having coordinates (0 0, the range of 5) is approximately { | 05 ≤  ≤ 4} = [05. 4] 5. From Figure 1 in the text, the lowest point occurs at about(   ) = (12 −. The highest point occurs at about 85) (17 115) . Thus, the range of the vertical ground acceleration is−85 ≤  ≤ 115. Written in interval notation, the range is[−85 115] . °c 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. 9 10 ¤ CHAPTER 1 FUNCTIONS AND MODELS 6. Example 1: A car is driven at60 mih for 2 hours. The distance  traveled by the car is a function of the time. The domain of the function is { | 0 ≤  ≤ 2, where } is measured in hours. The range of the function is{ | 0 ≤  ≤ 120}, where is measured in miles. Example 2: At a certain university, the number of studentson campus at any time on a particular day is a function of the timeafter midnight. The domain of the function is{ | 0 ≤  ≤ 24, where } is measured in hours. The range of the function is{ | 0 ≤  ≤ }, where is an integer and is the largest number of students on campus at once. Example 3: A certain employee is paid$800per hour and works a maximum of 30 hours per week. The number of hours worked is rounded down to the nearest quarter of an hour. This employee’s gross weekly pay is a function of the number of hours worked. The domain of the function is[0 30]and the range of the function is {0 200 400     238 . 00 24000} 240 pay 0 0.25 0.50 0.75 29.50 29.75 30 hours 2 4 238 236 7. We solve3 − 5 = 7for : 3 − 5 = 7 ⇔ −5 = −3 + 7 ⇔  = 3 5  − 7 5 . Since the equation determines exactly one value of for each value of , the equation definesas a function of . 8. We solve32 − 2 = 5for : 32 − 2 = 5 ⇔ −2 = −3 2 + 5 ⇔  = 3 22 − 5 2 . Since the equation determines exactly one value offor each value of , the equation definesas a function of . 9. We solve2 + ( − 3)2 = 5 for : 2 + ( − 3)2 = 5 ⇔ ( − 3) 2 = 5 − 2 ⇔  − 3 = ± √ 5 − 2 ⇔  = 3 ± √ 5 − 2 . Some input values correspond to more than one output. (For instance,  = 1corresponds to  = 1and to  = 5.) Thus, the equation does not defineas a function of . 10. We solve2 + 52= 4 for : 2 + 52= 4 ⇔ 5 2 + (2)  − 4 = 0 ⇔  = −2 ±  (2) 2 − 4(5)(−4) 2(5) =

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
29 de septiembre de 2023
Número de páginas
203
Escrito en
2023/2024
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

SOLUTION MANUALS FOR CALCULUS EARLY TRANSCENDENTALS 9th EDITION BY JAMES STEWART, DANIEL K. CLEGG & SALEEM WATSON 2023/2024 / GRADED A+. 1FUNCTIONS AND MODELS
1.1Four Ways to Represent a Function
1.The functions() =  +√2 − and() =  +√2 − give exactly the same output values for every input value, so 
andare equal.
2.() =2− 
 − 1=( − 1)
 − 1= for − 1 6= 0, soand[where() = ] are not equal because (1)is undefined and
(1) = 1.
3.(a) The point(−2 2)lies on the graph of, so(−2) = 2. Similarly, (0) = −2, (2) = 1, and (3)  25.
(b) Only the point(−4 3)on the graph has a value of3, so the only value offor which() = 3is−4.
(c) The function outputs()are never greater than 3, so () ≤ 3for the entire domain of the function. Thus, () ≤ 3for
−4 ≤  ≤ 4(or, equivalently, on the interval [−4 4]).
(d) The domain consists of all  values on the graph of:{ | −4 ≤  ≤ 4} = [−4 4]. The range ofconsists of all the
 values on the graph of:{ | −2 ≤  ≤ 3} = [−2 3].
(e) For any1 
2in the interval[0 2], we have(1) (2). [The graph rises from(0 −2)to(2 1).] Thus,()is
increasing on[0 2].
4.(a) From the graph, we have (−4) = −2and(3) = 4.
(b) Since(−3) = −1and(−3) = 2, or by observing that the graph of is above the graph ofat = −3,(−3)is larger
than(−3).
(c) The graphs ofandintersect at = −2and = 2, so () = ()at these two values of.
(d) The graph oflies below or on the graph of for−4 ≤  ≤ −2and for2 ≤  ≤ 3. Thus, the intervals on which
 () ≤ ()are[−4 −2]and[2 3].
(e) () = −1is equivalent to = −1, and the points on the graph of with values of−1are(−3 −1)and(4 −1), so
the solution of the equation () = −1is = −3or = 4.
(f) For any1 2in the interval[−4 0], we have(1) 
(2). Thus,()is decreasing on[−4 0].
(g) The domain ofis{ | −4 ≤  ≤ 4} = [−4 4]. The range ofis{ | −2 ≤  ≤ 3} = [−2 3].
(h) The domain ofis{ | −4 ≤  ≤ 3} = [−4 3]. Estimating the lowest point of the graph of as having coordinates
(0 05), the range ofis approximately{ | 05 ≤  ≤ 4} = [05 4].
5.From Figure 1 in the text, the lowest point occurs at about (  ) = (12 −85). The highest point occurs at about (17 115).
Thus, the range of the vertical ground acceleration is −85 ≤  ≤ 115. Written in interval notation, the range is [−85 115].
c°2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. 9 10¤CHAPTER 1FUNCTIONS AND MODELS
6.Example 1: A car is driven at60mih for2hours. The distance
traveled by the car is a function of the time . The domain of the
function is{ | 0 ≤  ≤ 2}, whereis measured in hours. The range
of the function is{ | 0 ≤  ≤ 120}, whereis measured in miles.
Example 2: At a certain university, the number of students on
campus at any time on a particular day is a function of the time after
midnight. The domain of the function is { | 0 ≤  ≤ 24}, whereis
measured in hours. The range of the function is { | 0 ≤  ≤ },
whereis an integer andis the largest number of students on
campus at once.
Example 3: A certain employee is paid $800per hour and works a
maximum of30hours per week. The number of hours worked is
rounded down to the nearest quarter of an hour. This employee’s
gross weekly payis a function of the number of hours worked .
The domain of the function is [0 30]and the range of the function is
{0 200 400  23800 24000}.240pay
hours 0.250.500.75029.50 29.753024238236
7.We solve3 − 5 = 7for:3 − 5 = 7⇔ −5 = −3 + 7⇔  =35 −75. Since the equation determines exactly
one value offor each value of, the equation definesas a function of.
8.We solve32− 2 = 5for:32− 2 = 5⇔ −2 = −32+ 5⇔  =322−52. Since the equation determines
exactly one value offor each value of, the equation definesas a function of.
9.We solve2+ ( − 3)2= 5for:2+ ( − 3)2= 5⇔ ( − 3)2= 5 − 2⇔  − 3 = ±√5 − 2⇔
 = 3 ±√5 − 2. Some input valuescorrespond to more than one output . (For instance, = 1corresponds to = 1and
to = 5.) Thus, the equation does not defineas a function of.
10.We solve2 + 52= 4for:2 + 52= 4⇔ 52+ (2)  − 4 = 0⇔
 =−2 ±
(2)2− 4(5)(−4)
2(5)=−2 ±√42+ 80
10=− ±√2+ 20
5(using the quadratic formula). Some input
valuescorrespond to more than one output . (For instance, = 4corresponds to = −2and to = 25.) Thus, the
equation does not defineas a function of.
11.We solve( + 3)3+ 1 = 2for:( + 3)3+ 1 = 2⇔ ( + 3)3= 2 − 1⇔  + 3 =3√2 − 1⇔
 = −3 +3√2 − 1. Since the equation determines exactly one value of for each value of, the equation definesas a
function of.
c°2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. SECTION 1.1FOUR WAYS TO REPRESENT A FUNCTION ¤11
12.We solve2 − || = 0for:2 − || = 0⇔ || = 2⇔  = ±2. Some input valuescorrespond to more than
one output. (For instance, = 1corresponds to = −2and to = 2.) Thus, the equation does not defineas a function
of.
13.The height 60 in( = 60)corresponds to shoe sizes 7 and 8 ( = 7and = 8). Since an input valuecorresponds to more
than output value, the table does not defineas a function of.
14.Each yearcorresponds to exactly one tuition cost . Thus, the table definesas a function of.
15.No, the curve is not the graph of a function because a vertical line intersects the curve more than once. Hence, the curve fails
the Vertical Line Test.
16.Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [−2 2]and the range
is[−1 2].
17.Yes, the curve is the graph of a function because it passes the Vertical Line Test. The domain is [−3 2]and the range
is[−3 −2) ∪ [−1 3].
18.No, the curve is not the graph of a function since for  = 0,±1, and±2, there are infinitely many points on the curve.
19.(a) When = 1950, ≈ 138◦C, so the global average temperature in 1950 was about 138◦C.
(b) When = 142◦C, ≈ 1990.
(c) The global average temperature was smallest in 1910 (the year corresponding to the lowest point on the graph) and largest
in 2000 (the year corresponding to the highest point on the graph).
(d) When = 1910, ≈ 135◦C, and when = 2000, ≈ 144◦C. Thus, the range ofis about[135,144].
20.(a) The ring width varies from near 0 mmto about16 mm, so the range of the ring width function is approximately [0 16].
(b) According to the graph, the earth gradually cooled from 1550 to 1700, warmed into the late 1700s, cooled again into the
late 1800s, and has been steadily warming since then. In the mid 19th century, there was variation that could have been
associated with volcanic eruptions.
21.The water will cool down almost to freezing as the ice melts. Then, when
the ice has melted, the water will slowly warm up to room temperature.
22.The temperature of the pie would increase rapidly, level off to oven
temperature, decrease rapidly, and then level off to room temperature.
c°2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
$32.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
onlinetutor2025 University of South Africa (Unisa)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
250
Miembro desde
2 año
Número de seguidores
218
Documentos
848
Última venta
1 mes hace

4.0

17 reseñas

5
8
4
4
3
3
2
1
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes