M
GR 10 MATHS – EXAM MEMOS
2
••• 2 x
NATIONAL EXEMPLAR PAPER 1 1.4 Let x = 2.1.3
= R
0,245 3S
â x = 0,245 245
x 3 S) â 2x = 3 SR
............................................
3SR
❶ x
x 1 000) â 1 000x = 245, 245 245
.....................................................................
➋
1.1.1 (m - 2n)(m2 - 6mn - ÷ 2) â =
n 2) ➋ - ❶: â 999x = 2
245 9 S2R2
= m3 - 6m2n - mn2 Square: â x = €
245 4
- 2m2n + 12 mn2 + â x= 99
2n3 9
wher
= m3 - 8m2n + 11 mn2 + . . . i.e. x can be expressed as e 2.2 6q + 7p = 3 ... ❶
2n3 € a
2q + p = 5 ... ➋
b
a & b ∈Z
1.1.2 x +1 3
4x2 - 3x -
â x is a rational ➋ x 3 : 6q + 3p = 15 ... ⮊
x - x +1
2
1
❶ - ⮊: â 4p = - 12
number
- 4x + 1
x2 x + 1
(x + 1)( - ) (4x + 1)(x - 1) â p = -3 €
=
-
( x2 - x + ( 4x + 1)
1)
= (x + 1) - (x -
1) 2.1.1 x2 - 4x = ➋: â 2q - 3 = 5
21
= x+1 - x+1
â x2 - 4x - 21 = 0
= 2 € 5
â (x + 3)(x - 7) = 0
â x+3 = 0 or x-7= 0
1.2.1 6x - 7x - 20
2
2 5 â x = -3 € â x = 7
3 4 €
= (2x - 5)(3x + 4) €
, 3.1.1 The 1st â 2q = 8
EXAM MEMOS: PAPER
â q = 4 € 3 terms:
1.2.2 a2 + a - 2ab - 2b 3(3) + 1 ; 2(3) ; 3(3) - 7
2.1.2 3x 4 =
= a(a + 1) - 2b(a + 5 96 â 10 ; 6 ; 2 €
1)
= (a + 1)(a - ÷ 3) â x 4 = 32
2b) €
5
4 4 3.1.2 The difference is - 4
â (x )
4
5
= (2 ) 5
5
1.3 49 < 51 < 64 . . . i.e. 51 lies between 49 and â In Tn = an + b: a = -4
64
â x = 24
â x & T0 = b = 14 . . . the
st
term before the
â 7 < 51 < 8 . . . taking the square root
1 term
1
= 16
€ â Tn = - 4n +
i.e. 51 lies between 7 and
14 €
8 €
M1 Copyright © The Answer