100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Chapter 11 Forcible Entry (Block 1 Test 2)fully solved

Puntuación
-
Vendido
-
Páginas
10
Grado
A+
Subido en
23-09-2023
Escrito en
2023/2024

Supply Hose This type of fire hose transports water from a fire hydrant or other water supply source to an apparatus equipped with a pump located at or neat the fire scene Attack Hose This type of fire hose transports water or other agents, at increased pressure, from the following sources: -From pump-equipped apparatus to a nozzle -From pump-equipped apparatus to a fire department connection mounted on a structure -From a building standpipe to the point the water is applied to the fire Hose Construction Fire hose must be made of best materials available, used in appropriate manner, and maintained according to the manufacturer's recommendations. It must be watertight, flexible, and have a smooth, rubber/neoprene lining covered by a durable jacket. Configurations include: single-jacket, double-jacket, rubber single-jacket, and hard-rubber or plastic-noncollapsible types NFPA 1961 The NFPA standard on fire hose. Determines the manufacturing of fire hose in a variety of sizes and lengths. Hose Diameter When the size of a fire hose is given, it refers to the internal ______ _____________. It should not be less than the advertised or labeled size of the hose meaning the diameter or the hose is no less than its actual internal diameter. Some types of hose can expand beyond their actual internal diameter because of its elastic qualities. The performance of a particular hoseline depends on the materials and methods used in its construction. Hose Length Supply and attack hoses are manufactured in 50 or 100 feet lengths for convenience and ease of handling. The traditional length of hose in North America is 50 feet per section. Modern hose may be carried in longer sections because of it's high-strength, light-weight synthetic materials. Suction Hose This type of hose is used to connect the pumper to a hydrant or other water source. They are manufactured in minimum lengths specified in NFPA 1901. Also known as intake hose. Soft Sleeve Hose This type of hose is used to connect the main pumper intake to the pumper connection on the fire hydrant. It has two female or non threaded couplings. It is a minimum 15' in length. It is not rigid and cannot be used for drafting because it will collapse. It ranges in size from 2.5" to 6" in diameter. Also known as soft suction hose. Hard Suction Hose This type of hose is generally constructed in 10' sections and is designed for drafting water from static water supplies or connecting to a fire hydrant. Some are constructed of rubberized reinforced material while others are made of heavy-duty corrugated plastic. Ranges from 2.5" to 6" in diameter. Couplings These designed to connect hose sections to form a continuous hose line and to connect fire hoses to nozzles., hydrants, pumper connections, and FDC's. They are made of durable, rust-proof materials designed to couple and uncouple quickly with little effort. Materials used are generally alloys of brass, aluminum, or magnesium. Regulated by NFPA 1963. Threaded types must meet American National Fire Hose Connection Screw Threads (National Hose). Having nationally standard threading allows multiple different fire departments responding together to connect hose sections and supply sections from adjacent departments. Cast Coupling Very weak coupling and only found on occupancy use hose. They often crack if reattachment of the hose is attempted. Extruded Coupling Coupling usually made of aluminum or aluminum alloy, allowing for their lightweight and high strength. Somewhat stronger than cast. Drop Forged Coupling Coupling made of brass or other malleable metals. They are the strongest and most expensive. Threaded Coupling This coupling design is one of the oldest and involves the casting or machining of a spiral tread into the face of two distinctly different couplings (male and female). Male is cut on the exterior surface. Female is cut on the interior surface of a free-turning ring called a swivel. This permits connecting two sections of hose without twisting the entire hose. A male and female coupling together is referred to as a set or three-piece coupling. The male is one piece, the female and swivel is the other two pieces. Fire hose threads are coarse which permits quick connections. Some are large with ball bearings under the swivel to ensure smooth connections. A gasket inside the base of the female coupling ensures a tight fit and reduces leaks. These are manufactured with either lugs or handles to aid in tightening/loosening the connections. FFs can use spanner wrenches to make connections and tighten/loosen couplings. Shank the portion of the threaded coupling that serves as a point of attachment to the hose. Higbee Cut and Indicator 1. flattened angle at the end of the threads that prevents cross-threading when couplings are connected. ator on the exterior of the coupling that marks where the flattened angle begins. Threaded Coupling Lugs Pin lugs may be found in older couplings. Not as common because of their tendency to catch when hose is dragged over objects or deployed from the hose bed of a pumping apparatus. Booster fire hose usually has couplings with recessed lugs. These are shallow and prevent abrasion that would occur if the lugs protruded and was wound onto the reels. FFs can us spin lug spanner wrench to tighten or loosen these. Modern threaded couplings have rounded rocker lugs. These prevent the hose from catching on objects. On of the rocker lugs are scalloped with a shallow indentation to mark the higbee cut. Handles or extended lugs can be located on the swivels of large intake supply or suction hoses. FFs can grasp these handles to tighten the large coupling. They can also be struck with a large rubber mallet to loosen or tighten. Nonthreaded Coupling This type of coupling design is connected with locks or cams rather than screw threads. They are usually sexless although some can be female or male. Because they are sexless, they will all be identical. Two types of sexless couplings include quarter turn and storz. Quarter-turn: has two hook-like lugs on each coupling. Lugs extend past a raised lip or ring on the open end. When the couplings are joined, the lug of one slips over the ring of the opposite coupling and then rotates 90˚ to lock. A gasket on each coupling face completes the seal. Store: most commonly found on large-diameter hose. Joined and then rotated until locked in place to form the connection. The locking consists of grooved lugs and inset rings built into the face of each coupling swivel. When joined, lugs fit into recesses in the opposite coupling and slide into locking position with a one-third rotation. Nonthreaded coupling Advantages and Disadvantages This coupling design provides the following: -Fire hose can be quickly connected, also requires spanner wrench to ensure connection -No risk of cross threading and damaging because no threads -Double-male or double-female adapters are not needed so the hose can be deployed from the bed regardless of hose load type However it provides these as well: -Hoses can become uncoupled, often suddenly and violently -Hydrants required an adapter to make the connection, increasing time required to connect -Dir and other large debris can become lodged inside the coupling's grooves, giving the impression that a tight seal has been made when it hasn't Mechanical Damage This type of damage to a hose occurs when contact with an object or surface causes slices, rips, and abrasions on the exterior covering, crushed or damaged couplings, or cracked inner linings. To prevent: Avoid laying or pulling hose over rough, sharp edges or objects such as corners, cornices, parapets, and windowsills, protect hoses by using a hose roller or placing a salvage cover over edges, clear windowsills of broken glass fragments, provide traffic control to prevent vehicles from driving over hose, use hose ramps or bridges to protect hose from vehicles driving over it when traffic cannot be rerouted, open and close nozzles, valves, and hydrants slowly to limit excessive stress and prevent water hammer, provide chafing blocks to prevent abrasion to hose when it vibrates near the pumper, abide excessive pump pressure on homeliness, deploy hoselines away from debris or clear debris from path during overhaul, change position of folds when reloading into truck, clean hose before reloading to prevent abrasions. Thermal Heat Damage This type of damage to hose can result from exposure to excessive heat temps. This can char, melt, or weaken the outer jacket and dehydrate the rubber lining. Inner linings can also be dehydrated when the hose is hung to dry longer than necessary or in sunlight. Use mechanical dryers to eliminate this. To prevent: Protect hose from exposure to excessive heat or fire when possible, remove hose from any heated area as soon as dry, use moderate temps for mechanical drying, protect hose from exposure to excessive heat or fire when possible, remove hose from any heated area as soon as dry, use moderate temps for mechanical drying, keep outside of woven jacket fire hose dry when not using, run water through hose that has not been used for some time to keep liner soft, avoid laying fire hose on hot pavement to dry, roll dry hose in a straight roll to store, prevent hose from coming in contact with or being close to vehicle exhaust, use hose bed covers on apparatus to shield from the sun. Thermal Cold Damage This damage occurs due to cold temps and when water on the inside or outside freezes. Use cold resistant hose for this. It should perform with the same reliability as regular hose. To prevent freezing: maintain water flow in intake hose by circulating water from a hydrant through the fire pump, discharging it through a drain-off hose that routes water down a gutter, or to a place away from the apparatus, immediately drain and roll hose that is no longer needed, tighten connections to prevent couplings from leaking, apply a manufacturer approved cold weather lube that contains antifreeze on the swivel and gasket. When freezing happens, you can remove by melting the ice with a steam generating device, chop the hose loose with axes, or leave it until the weather warms enough to melt. To do this: make all cuts well away from the hose when chopping it out of ice, avoid using exhaust manifold heat because it can be very hot and creates a carbon monoxide hazard, wait until the hose is thawed before folding, if the hose sections can be uncoupled, carefully load them onto a flatbed vehicle and transport to where they can be thawed and protected from damage, perform a service test before placing back into service. Organic Damage This type of damage to hoses refers to mildew and mold which can rot natural fibers. If a natural fiber or cotton woven hose is stored wet, rot can weaken the jacket and lead to ruptures under pressure. Some hoses are made of rot resistant fibers such as Dacron. Rubber jacket hose is not subject to this type of damage. To prevent: remove all wet hose from an apparatus after a fire and replace with dry hose or dry the wet hose, inspect, wash, and dry hose that has been contaminated, remove, inspect, seep, and reload hose if it has not been unloaded from the apparatus during a period of six months, inspect and test hose annually and after possible damage or freezing, ensure that cotton or cotton blend hose is dry before storing, cover hose beds withe water repellent covers to keep loads dry during weather, inspect fire hose in storage periodically, remove and rotate hose periodically, ventilate areas where fire hose is kept, wash immediately whenever mildew is discovered. To do this, scrub the cover jacket with mild soap or bleach, rinse well, dry completely inspect the hose section within the next few days for any reappearance of mildew. Chemical Damage This type of damage occurs from vapors or liquids that can damage the outer jacket or cause the rubber lining to separate from the inner jacket. This could be cause from: exposure to petroleum products, paints, acids, or alkalis, battery acid, runoff water from an incident containing foreign materials, sulfuric acid from water not drained completely from the hose. To prevent: avoid laying hose directly against curbs where oil, gasoline, and battery acid may accumulate or pool from parked vehicles, place the hose 2-4 feet away from the curb, move the hose onto a sidewalk, avoid exposing fire hose to hazardous material spills, avoide exposing to foam concentrate spills, scrub hose suspected of having contacted hazardous materials with a solution of bicarbonate of soda and water, remove hose periodically from the apparatus, wash with plain water, and dry, test hose properly if there is suspicion of damage, dispose of hose according to departmental SOPs of exposed to hazardous materials and cannot be decontaminated. Corrosion Damage This type of damage is a chemical process in which a metal is attacked by some substance in its environment and converted to an unwanted compound that gradually weakens or destroys the metal. Couplings are the part of the hose that are susceptible to this. Although they are highly resistive to it, it may still happen. Brass: will darken and turn green when in contact with most organic material. Can form on exposed surfaces as well as on the interior of female swivels or inside surface of nozzles. Aluminum: developer a layer of this that in effect seals the metal against further oxidation. Age Deterioration This occurs if a fire hose is left on an apparatus bed for a long time. The sharp folds in the hose can crack especially if the hose was packaged tightly. This can be prevented by removing and repacking hose every six months if they are not used. When reloading, pack it loosely and fold it in places where it previously wasn't. Use a flat fold. This can also happen if it is left hanging in a hose tower for excessive periods of time. The inner lining can become weakened at the point where it hangs over the support peg. Reinforced jacketed fabric hose may suffer separation of the rubber or plastic lining from the inner reinforcement, reducing the strength of the hose at the point of the separation. To prevent, remove the hose from the tower as soon as its dry. Hose Inspection This must occur within 90 days before being placed into service for the first time and at least annually thereafter according to NFPA 1962. Each time a hose is used, this must happen to ensure that it is free of visible soil or damage. Check couplings for ease of operation, deformations, or other visible damage. Conduct a post incident inspection allowing FFs to identify and mark damage on the hose and couplings. Report deficiencies including: evidence of dirt or debris on the hose jacket or couplings, damage to the jacket, coupling loosed from the hose, damage to female/male threads, obstructed operation of the swivel, absence of a well-fitting gasket in the swivel. Hose Washing Doing this depends on the type of hose. Hard rubber booster, hard intake, and rubber jacket collapsible hose require rinsing with clear water, occasionally mild soap if necessary. Woven-jacket fire hose should be brushed to remove dust and dirt, then wash with clear water and a stiff brush to remove the rest. If exposed to oil, wash the hose with mild soap or detergent using common scrub brushes or straw brooms. Rinse with clear water. Hose washing machines can make this much easier. Common washers can do hoses up to 3". Flow of water can be adjusted and movement of water propels the hose through the device. Higher pressure gives better results. Cabinet-type machines can wash, rinse, and drain hoses in station. It can only be operated by one person, is self propelled, and can be used with or without detergent. Hose Drying This should be done to hoses before they are stored. Methods depend on the type of hose. They should be dried in accordance with departmental Sops and manufacturer recommendations. Woven jacket hose must have this done before being reloaded onto an apparatus. Hard-rubber, hard intake, and synthetic jacket collapsible may be placed back on the apparatus while wet. Towers and racks must have adequate ventilation and protection so that fire hose is not exposed to excessive temps or direct sunlight. When using: remove hose as soon as dry to protect from sunlight, lash or tie coupling ends of hose together to prevent swinging in the wind, cover male threads with precut sections of tubing to provide protection, include racks to allow water to drain from hose, avoid placing hose sections too close together or allowing them to touch. Hose Storing After washing and drying hose, roll and do this in a manner that protects them from damage. Racks can be mounted on the wall or used to store or move hose from storage rooms to apparatus for loading. Try to avoid doing this in places where the hose can be exposed to solvents, lube, oils, diesel fumes, and other airborne contaminants. If you have to store them in those places, inspect them more frequently. If using racks: locate racks in a clean, well-ventilated room, store where not exposed to direct sunlight, pack cotton fabric hose loosely so air can circulate around it, softer hose in a rack so that couplings are not in walkways and will not come into contact with equipment or personnel, roll hose with male end inside, when necessary to store with male coupling on outside, protect the threads with a cap, place sexless couplings on a storage rack in a way that prevents dirt from collecting in their ramp grooves. Coupling Care To exercise this, avoid dropping or dragging couplings, do not permit vehicles to drive over the hose or couplings, inspect couplings when the hose is washed and dried, remove the gasket and twist the swivel in warm, soapy water, clean threads to remove tar, dirt, gravel, and oil, inspect gasket and replace if cracked or creased. Connect female to male couplings to avoid exposing them to damage. Hose washing machines won't clean couplings sufficiently. Submerge the swivel in warm soapy water and move it back and forth to clean. Use a stiff brush to clean the male threads or a wire brush if necessary. Graphite or silicone lube can be used to maintain swivel spinning. Replace gaskets if they are hardened or inflexible. Hose Appliance This is any piece of hardware used in connection with fire hose for the purpose of controlling the flow of water and creating a variety of pathways for water through hose layouts. Common types include valves, valve devices, fittings and intake strainers. Ball Valve This valve is used in pumper discharges and gated wyes. These are open when the handle is in line with the hose and closed with it is at a right angle to the hose. They are used in fire pump piping systems. Gate Valve This valve is used to control the flow from a hydrant. They have a baffle that is lowered into the path of the water by turning a screw-type handle Butterfly Valve This valve is used on large pump intakes and incorporates a flat baffle that turns 90˚. Most are operated manually using a quarter-turn handle, but some are operated using an electric motor and can be controlled remotely. The baffle is in the center of the waterway and aligned with the flow when the valve is open. Clapper Valve This valve is used in siamese appliances and fire department connections to allow water to flow in one direction only. These prevent water from flowing out of unused ports when one intake hose is connected and charged before the addition of more hose. It is a flat disk hinged at the top or one side which swings open and closed like a door. Wye Appliance This valve device is used to divide a single hoseline into two or more lines. They have a single female inlet and multiple male outlet connections. They can have valve controlled outlets called gated wyes which generally incorporate the use of ball valves. One of the most common has a 2.5" inlet that divides into two 1.5" outlets. Siamese Appliance This valve device can be confused with wyes because they look similar however these combines multiple lines into one line. It permits multiple supply hoselines to be laid parallel to supply a pumper or high-output device. Usually consist of two female inlets with either a center clapper valve or two clapper valves and a single male outlet. Some may have three inlets. Commonly used when LDH is not available to overcome friction loss in exceptionally long hose lays or those that carry large flow. Also used to supply ladder pipes not equipped with a permanent waterway. Water Thief Appliance This valve device operates similar to wyes but they have an inlet and outlet of matching size combined with smaller outlets that "steal" water from the main line. Large volume types consist of an LDH inlet and outlet and two or more 2.5" valve controlled male outlets. Large-Diameter Hose Appliance This valve device is used when fire fighting ops required water to be distributed at various points along the main supply line. These can be used in these cases. When a large volume of water is needed near the end of a supply line, this can be used. It consists of one LDH inlet and three 2.5" valve controlled outlets. They are sometimes called portable hydrants, phantom pumpers, or large diameter distributors. Hydrant Valve This valve device comes in a variety of types and is available for use in supply line operations. They are used when a forward lay is made from a low-pressure hydrant to the fire scene. It has 4 main functions: allow additional hoselines to be laid to the hydrant, connect a supply pumper to the hydrant, boost the pressure in the original supply line without interrupting the flow of water in the line, allow the original supply line to be connected to the hydrant and charged before the arrival of another pumper at the hydrant. Fittings These are used to connect hose of different diameters and thread types or to protect the couplings on standpipes and on apparatus intakes/outlets. Two types: Adapters: connects hose couplings with similar threads and the same inside diameter. Most common are double male and double female adapters. Allow two males or two female to be coupled and connected. More common now is one that allows a sexless coupling to connect to a threaded outlet on a hydrant. Reducers: used to connect a smaller-diameter hoseline to the end of a larger one. Using this limits the large hose to suppling one smaller line only. Other types include elbows that provide support for intake or discharge hose at the pumping apparatus. Hose caps to protect male discharge outlets. Hose plugs to cap female inlets on some FDCs and to prevent kinks in the attack line on standpipe outlets in stairway risers.

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
23 de septiembre de 2023
Número de páginas
10
Escrito en
2023/2024
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

$13.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
BRAINBOOSTERS Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
654
Miembro desde
2 año
Número de seguidores
250
Documentos
22616
Última venta
5 horas hace

In this page you will find all documents , flashcards and package deals offered by seller BRAINBOOSTERS

4.5

339 reseñas

5
264
4
30
3
21
2
5
1
19

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes