100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary 3.6 Probleem 5

Puntuación
-
Vendido
2
Páginas
16
Subido en
25-08-2017
Escrito en
2016/2017

Comprehensive summary Psychology, E & D, Course 3.6, Understanding DLYIXSEA & DY5C4LCUL14, Literature Problem 5

Institución
Grado








Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
25 de agosto de 2017
Número de páginas
16
Escrito en
2016/2017
Tipo
Resumen

Temas

Vista previa del contenido

Michelle van Diën – 413154md
Problem 5. Numerical brain: From number sense to counting the numbers
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7),
307–314. doi:10.1016/j.tics.2004.05.002
What representations underlie the ability to think and reason about number? Certain numerical concepts, such
as the real numbers, are only ever represented by a subset of human adults, but other numerical abilities are
widespread and can be observed in adults, infants and other animal species. Review recent behavioral and
neuropsychological evidence that these ontogenetically and phylogenetically shared abilities rest on two core
systems for representing number. Performance signatures common across development and across species
implicate one system for representing large, approximate numerical magnitudes, and a second system for the
precise representation of small numbers of individual objects. These systems account for our basic numerical
intuitions, and serve as the foundation for the more sophisticated numerical concepts that are uniquely human.

Review evidence that two distinct core systems of numerical representations are present in human infants and
in other animal species, and therefore do not emerge through individual learning or cultural transmission.
Systems are automatically deployed, are tuned only to specific types of information, and continue to function
throughout the lifespan.
Systems are limited in their representational power. Neither system supports concepts of fractions,
square roots, negative numbers, or exact integers. The construction of natural, rational and real numbers
depends on arduous processes that are probably accessible only to educated humans in a subset of cultures,
but which nevertheless are rooted in the two systems that are our current focus and that account for humans’
basic ‘number sense’.

Core system 1: Approximate representations of numerical magnitude
Core system 1 in infants
Even in infancy, children exhibit numerical knowledge.
Limits on infants’ representations of number:
1. Infants’ numerical discriminations are imprecise and subject to a ratio limit: 6-month-old infants successfully
discriminate 8 vs. 16 and 16 vs. 32 dots, but fail with 8 vs. 12 and 16 vs. 24 under the same conditions.
2. Numerical discrimination increases in precision over development: 6-month-olds can discriminate
numerosities with a 1:2 but not a 2:3 ratio, whereas 10-month-old infants also succeed with the latter, and
adults can discriminate ratios as small as 7:8.
3. Numerical discrimination fails when infants are tested with very small numerosities in tasks controlled for
continuous variables: infants fail to discriminate arrays of 1 vs. 2, 2 vs. 4, and 2 vs. 3 dots, even though these
differ by the same ratios at which infants succeed with larger numerosities.
Infants’ approximate number representations are not limited to visual arrays. Infants’ discrimination
depends on abstract representations of numerosity. These abstract representations support number-relevant
computations. Infants recognize ordinal relationships between numerosities, and form expectations about the
outcomes of simple arithmetic problems such as 5 + 5.
Models representing numerosity as a fluctuating mental magnitude, akin to a ‘number line’, shared
across modalities. Two competing mathematical formulations of the number line. Highly similar behavioral
predictions.
1. The linear model with scalar variability represents the number line as a series of equally spaced distributions
with increasing spread.
2. The logarithmic model with fixed variability represents successive numerosities on a logarithmic scale subject
to a fixed amount of noise.
Both models: larger numerosities are represented by distributions that overlap increasingly with nearby
numerosities. This variability increases the likelihood of confusing a target with its neighbors, yielding infants’
ratio-dependent performance.

Core system 1 in older children and adults
Older children and adults share this system for representing large, approximate numerosities. When shown
arrays of dots or sequences of sounds under conditions that prevent counting, adults discriminate numerosities
when continuous variables are controlled, their discrimination is subject to a ratio limit, and the ratio limit is
$5.40
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
MichelleEUR Erasmus Universiteit Rotterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
156
Miembro desde
8 año
Número de seguidores
108
Documentos
137
Última venta
10 meses hace

3.5

32 reseñas

5
3
4
11
3
16
2
2
1
0

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes