100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Applied Microeconometrics (FEM11087)

Puntuación
-
Vendido
7
Páginas
111
Subido en
19-09-2023
Escrito en
2022/2023

Aantekeningen van de kennisclips, colleges en oefen colleges van AME.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
19 de septiembre de 2023
Número de páginas
111
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

fMODULE 1: LINEAR REGRESSION MODELS

Introduction to empirical methods: linear regression models
1. Introduction: linear regression model
- Empirical analysis
> Use data
Test a theory
Estimate relationship between variables
> First step is to clearly define your research question
Economic model
Intuitive and less formal reasoning (observation & existing scientific evidence)

- Single regression model
> We have two variables, y and x
We are interested in ‘explaining y in terms of x’ or ‘how y varies with changes in x’

For example: House prices and average income in a neighbourhood
- How does the average house prices in a neighbourhood changes when income changes




Positive association. Formula:

- Ceteris paribus relationship




> Simple linear regression model:
> Ceteris paribus = other factors held fixed

> If the factors in u are held fixed:
- Zero conditional mean assumption (gives another useful interpretation)
E(u|x) = E(u) = 0




For example:
What is the expected value of y, for a given value of x ^^




1

,Keep asking yourself…
- Can we draw ceteris paribus conclusions about how x affects y in our example?
> We need to assume E(u|x) = E(u) = 0
>> Zero conditional mean assumption
>> What does it mean in our example?
>>> Assume u is the same as amenities
>>> Then, amenities are the same regardless of average income
*E(amenities | income = 10,000) = E(amenities | income = 100,000)
Means: amenities (voorzieningen) is same regardless incomes
* If we think that the amount and quality of amenities is different in
richer than in poorer neighbourhoods then previous assumption
does not hold
* We cannot observe u, so we have no way of knowing whether or not
amenities are the same for all levels of x

2. Estimation and interpretation
- Given graph: each dot is a neighbourhood, positively related

- Estimate by ordinary least square estimates (OLS)

> Select a random sample of the population of interest




Using stata to add the values




> In stata
Income was in 1000 €, when average income increases by 1000, the average
houseprice increases by about 16000 €, ceteris paribus
Output tell us that expected houseprice = equal to -95000 when the income is 0
Does not make sense, cause we do not have negative prices but that is
cause income can not be 0 (> this way good interpretation)




2

,- Multiple regression model
> Difficult to draw ceteris paribus conclusions using simple regression analysis




is 2nd cp? Depends; if error is not correlated

> Multiple regression model:
> Multiple regression analysis allows us to control for many other factors that
simultaneously affect the dependent variable (better predictions also)

3. OLS assumptions for unbiasedness

- Unbiasedness of OLS = Expected value of estimator = population parameter
- Assumptions needed:
MLR1: Linear in parameters
MLR2: Random sampling
MLR3: No perfect collinearity
MLR4: Zero conditional mean, i.e., E(u|x)=0
> Assumption MLR1: Linearity in parameters




> Assumption MLR2: Random sampling
* We have a random sample of size n, following the population model
* If sample is not random, selection bias
> Assumption MLR3: No perfect collinearity = no perfect linear relationships
* In the sample (and therefore in the population):
None of the independent variables is constant, and
There are no exact linear relationships among the independent variables
Example:




3

, Perfect collinearity
- Estimation simply does not work
- Some softwares give error message and no/strange results
- Stata drops one variable automatically/arbitrarily and then estimates a
model that does not suffer from this problem:
But it may not be the variable you would prefer to drop, so i) start by
defining model properly and, only then, ii) estimate it
Imperfect collinearity
- Model works but is problematic, imprecise estimates
- Beware of x’s with high correlation
- Symptoms of imperfect collinearity (for example, between x1 & x2):
Big F-stat (x1, x2 jointly significant) but
small t-statistics (for example x1 and x2 individually insignificant)
> Assumption MLR4: Zero conditional mean (important and complicated)

Next step is to do hypothesis testing: do we need additional assumptions to do inference?
YES:

4. Assumptions for inference (gevolgtrekking/conclusie)
- Inference - hypothesis testing
> We make two additional assumptions:
MLR5: Homoskedasticity
MLR6: Normality
> MLR1 - MLR6: OLS estimator is the minimum variance unbiased estimator
- Assumption MLR5: homoskedasticity
> Variance of error term is the same regardless of the values of the independent

Variables:
> Importance of error term same for all individuals
> Magnitude of uncertainty in the outcome of y is the same at all levels of x’s
Example: in which figure is the homoskedasticy assumption most likely to be satisfied?




B less variation for small x, more for large x
So in figure A the assumption is most likely to be satisfied
> If assumption does not hold, then we have heteroskedasticity:


> In case of heteroskedasticity:




* SE and statistics used for inference can easily be adjusted
→ ALWAYS use heteroskedasticity-robust standard errors




4
$12.60
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
lauraakkermans2000 Erasmus Universiteit Rotterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
20
Miembro desde
5 año
Número de seguidores
10
Documentos
4
Última venta
2 meses hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes