100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Real analysis: Sequences and series

Puntuación
-
Vendido
-
Páginas
12
Subido en
04-09-2023
Escrito en
2023/2024

This document provides an in-depth introduction to the series and sequences in real Analysis. It is short yet it does not confiscate any detail in regards to what is being provide in it. It ranges from What sequences are to Absolute and conditional convergence

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
4 de septiembre de 2023
Número de páginas
12
Escrito en
2023/2024
Tipo
Resumen

Temas

Vista previa del contenido

Sequences and series in Real Analysis
Lunga Buthelezi
25 August 2023


1 Sequences
1.1 Definition
A sequence of real numbers (or a sequence in R) is a function defined on the set
N = {1, 2, . . .} of natural numbers whose range is contained in the set R of real
numbers.

In a broader context, it is important to recognize that a sequence
within a set A can be rigorously defined as a function f : N → A.
This formalism is often denoted using the concise notation an =
f (n), with n being an element of the natural numbers N.
However, within the realm of 2RA (Real Analysis), our primary
focus revolves around the study of real sequences f : N → R. This
specialization enables us to delve deep into the properties, limits,
and convergence behavior of sequences within the real number
system, we are doing Real Analysis after all

In other words, a sequence in R assigns to each natural number n = 1, 2, . . . a
uniquely determined real number. If (an ) : N → R is a sequence, we will usually
denote the value of X at n by the symbol an rather than using the function
notation A(n). The values an are also called the terms or the elements of the
sequence. We will denote this sequence by the notations

(an ), (an : n ∈ N ).

Of course, we will often use other letters, such as (bk ), (ci ), etc., to denote
sequences.
We purposely use parentheses to emphasize that the ordering induced by
the natural order of N is a matter of importance. Thus, we distinguish nota-
tionally between the sequence (an : n ∈ N ), whose infinitely many terms have
an ordering, and the set of values {an : n ∈ N } in the range of the sequence
that are not ordered. For example, the sequence X := ((−1)n : n ∈ N ) has in-
finitely many terms that alternate between 1 and −1, whereas the set of values
{(−1)n : n ∈ N } is equal to the set {1, −1}, which has only two elements.


1

, Sequences are often defined by giving a formula for the nth term xn . Fre-
quently, it is convenient to list the terms of a sequence in order, stopping when
the rule of formation seems evident. For example, we may define the sequence
of reciprocals of the even numbers by writing
1 1 1 1
(an ) := , , , ,...,
2 4 6 8
though a more satisfactory method is to specify the formula for the general term
and write
1
(an ) := : n ∈ N,
2n
or more simply, (an ) = (1/2n).
Another way of defining a sequence is to specify the value of x1 and give a
formula for xn+1 (n ≥ 1) in terms of an . More generally, we may specify x1 and
give a formula for obtaining xa+1 from a1 , a2 , . . . , an . Sequences defined in this
manner are said to be inductively (or recursively) defined.


2 Examples of sequences
(a) If b ∈ R, the sequence B := (b, b, b, . . .), all of whose terms equal b, is called
the constant sequence b. Thus, the constant sequence 1 is the sequence
(1, 1, 1, . . .), and the constant sequence 0 is the sequence (0, 0, 0, . . .).
(b) If b ∈ R, then B := (bn ) is the sequence B = (b, b2 , b3 , . . . , bn , . . .). In
particular, if b = 12 , then we obtain the sequence

1 1 1 1
, , ,..., n,....
2 4 8 2

3 The Limit of a Sequence
There are several different limit concepts in real analysis. The notion of a limit
of a sequence is the most fundamental, and it will be the primary focus of this
chapter.

3.1 Definition
A sequence A = (an ) in R is said to converge to a ∈ R, or a is said to be a limit
of (an ):

if for every ε > 0 there exists a natural number N (ε) such that for
all n ≥ N (ε), the terms an satisfy |an − a| < ε.

If a sequence has a limit, we say that the sequence is convergent; if it has
no limit, we say that the sequence is divergent.



2
$6.17
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
Lungathem

Conoce al vendedor

Seller avatar
Lungathem University of Cape Town
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
2 año
Número de seguidores
0
Documentos
2
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes