100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Übungen zu Mathematik 1 mit Musterlösungen

Puntuación
-
Vendido
1
Páginas
9
Grado
1
Subido en
03-09-2023
Escrito en
2022/2023

Übungen zu Mathematik 1 mit Musterlösungen

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
3 de septiembre de 2023
Número de páginas
9
Escrito en
2022/2023
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Heilbronn, den 9.3.2021 Prof. Dr. V. Stahl SS 21


Übungen zu Mathematik 1
mit Musterlösungen
Blatt 1


Aufgabe 1. Berechnen Sie alle Lösungen der Gleichung

(5x + 2)x = 3.

Lösung von Aufgabe 1. Umformen der Gleichung ergibt

5x2 + 2x − 3 = 0.

Mit der Mitternachtsformel erhält man

−2 ± 4 + 60
x1,2 =
10
−2 ± 8
=
10
−1 ± 4
=
5
Damit sind die Lösungen
3
x1 = , x2 = −1.
5

Aufgabe 2. Wiederholen Sie die Rechengesetze der e-Funktion wie z.B.

ex+y = ex ey
1
e−x =
ex
exy = (ex )y
e0 = 1.

Weiterhin sollten Sie wissen, dass die e-Funktion streng monoton steigend
ist und

ex → 0 für x → −∞ und
x
e →∞ für x → ∞.

Lösen Sie damit die Gleichung
1
ex+1 = .
ex−1

Lösung von Aufgabe 2. Umformen ergibt

ex−1 ex+1 = 1
(x−1)+(x+1)
e = 1
2x
e = 1.


1

, Da die e-Funktion streng monoton steigend ist, ist diese Gleichung nur
erfüllt wenn

2x = 0.

Damit hat man nur eine Lösung

x = 0.

Aufgabe 3. Wiederholen Sie die Rechengesetze der Logarithmusfunktion wie
z.B.

ln(xy) = ln(x) + ln(y)
n
ln(x ) = n ln(x)
ln(1/x) = ln(x−1 ) = − ln(x)
ln(x)
loga (x) = .
ln(a)

Weiterhin sollten Sie wissen, dass ln(x) nur für x > 0 definiert ist und
dass die ln-Funktion streng monoton steigend ist.
Lösen Sie hiermit die Gleichung

log3 (x + 1) = log9 (4x).

Hinweis: Nutzen Sie aus, dass 9 = 32 .

Lösung von Aufgabe 3. Umformen ergibt

ln(x + 1) ln(4x)
=
ln(3) ln(32 )
ln(x + 1) ln(4x)
=
ln(3) 2 ln(3)
ln(4x)
ln(x + 1) =
2
2 ln(x + 1) = ln(4x)
ln((x + 1)2 ) = ln(4x).

Da die ln-Funktion streng monoton steigend ist, muss das Argument der
ln Funktion auf beiden Seiten gleich sein, d.h.

(x + 1)2 = 4x

sein. Umformen ergibt

x2 + 2x + 1 = 4x
x2 − 2x + 1 = 0
2
(x − 1) = 0.

Die Gleichung hat damit genau eine Lösung x = 1.


2
$7.18
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
jmoses

Conoce al vendedor

Seller avatar
jmoses Hochschule Heilbronn (Heilbronn)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1
Miembro desde
4 año
Número de seguidores
1
Documentos
2
Última venta
2 año hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes