100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Pearson Edexcel Merged Question Paper + Mark Scheme (Results) Summer 2022 Pearson Edexcel GCSE In Mathematics (1MA1) Higher (Non-Calculator) Paper 1H *P66305A0124* Turn over

Puntuación
-
Vendido
-
Páginas
51
Grado
A+
Subido en
30-07-2023
Escrito en
2022/2023

Pearson Edexcel Merged Question Paper + Mark Scheme (Results) Summer 2022 Pearson Edexcel GCSE In Mathematics (1MA1) Higher (Non-Calculator) Paper 1H *P66305A0124* Turn over Candidate surname Other names Total Marks Centre Number Candidate Number Please check the examination details below before entering your candidate information Time Paper reference Mathematics PAPER 1 (Non‑Calculator) Higher Tier 1 hour 30 minutes 1MA1/1H Pearson Edexcel Level 1/Level 2 GCSE (9-1) P66305A ©2021 Pearson Education Ltd. 1/1/1/1/ Instructions • Use black ink or ball-point pen. • Fill in the boxes at the top of this page with your name, centre number and candidate number. • Answer all questions. • Answer the questions in the spaces provided – there may be more space than you need. • You must show all your working. • Diagrams are NOT accurately drawn, unless otherwise indicated. • Calculators may not be used. Information • The total mark for this paper is 80 • The marks for each question are shown in brackets – use this as a guide as to how much time to spend on each question. Advice • Read each question carefully before you start to answer it. • Try to answer every question. • Check your answers if you have time at the end. • Good luck with your examination. You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser, Formulae Sheet (enclosed). Tracing paper may be used. *P66305A0224* 2 Answer ALL questions. Write your answers in the spaces provided. You must write down all the stages in your working. 1 Solve 7x − 27 < 8 ....................................................... (Total for Question 1 is 2 marks) 2 Write 124 as a product of its prime factors. ....................................................... (Total for Question 2 is 2 marks) *P66305A0324* Turn over 3 3 A delivery company has a total of 160 cars and vans. the number of cars : the number of vans = 3 : 7 Each car and each van uses electricity or diesel or petrol. 1 8 of the cars use electricity. 25% of the cars use diesel. The rest of the cars use petrol. Work out the number of cars that use petrol. You must show all your working. ....................................................... (Total for Question 3 is 5 marks) *P66305A0424* 4 4 (a) Write 1.63 × 10−3 as an ordinary number. ....................................................... (1) (b) Write 438 000 in standard form. ....................................................... (1) (c) Work out (4 × 103 ) × (6 × 10−5) Give your answer in standard form. ....................................................... (2) (Total for Question 4 is 4 marks) *P66305A0524* Turn over 5 5 Here is a regular hexagon and a regular pentagon. x Work out the size of the angle marked x. You must show all your working. ....................................................... ° (Total for Question 5 is 3 marks) *P66305A0624* 6 6 (a) Complete the table of values for y = x2 − 3x + 1 x −1 0 1 2 3 4 y 1 −1 (2) (b) On the grid, draw the graph of y = x2 − 3x + 1 for values of x from −1 to 4 −1 1 2 3 4 −2 −1 1 2 3 4 5 O x y 6 (2) (c) Using your graph, find estimates for the solutions of the equation x2 − 3x + 1 = 0 ....................................................... (2) (Total for Question 6 is 6 marks) *P66305A0724* Turn over 7 7 Here are two cubes, A and B. 3 cm 4cm A B Cube A has a mass of 81 g. Cube B has a mass of 128 g. Work out the density of cube A : the density of cube B Give your answer in the form a : b, where a and b are integers. ....................................................... (Total for Question 7 is 3 marks) *P66305A0824* 8 8 The table shows the amount of snow, in cm, that fell each day for 30 days. Amount of snow (s cm) Frequency 0  s < 10 8 10  s < 20 10 20  s < 30 7 30  s < 40 2 40  s < 50 3 Work out an estimate for the mean amount of snow per day. ....................................................... cm (Total for Question 8 is 3 marks) *P66305A0924* Turn over 9 9 A cube is placed on top of a cuboid, as shown in the diagram, to form a solid. 4cm 5cm 7 cm 6cm The cube has edges of length 4cm. The cuboid has dimensions 7cm by 6cm by 5cm. Work out the total surface area of the solid. ....................................................... cm2 (Total for Question 9 is 3 marks) *P66305A01024* 10 10 The table shows some information about the profit made each day at a cricket club on 100 days. Profit (£x) Frequency   0  x < 50 10 50  x < 100 15 100  x < 150 25 150  x < 200 30 200  x < 250 5 250  x < 300 15 (a) Complete the cumulative frequency table. Profit (£x) Cumulative frequency 0  x < 50 0  x < 100 0  x < 150 0  x < 200 0  x < 250 0  x < 300 (1) *P66305A01124* Turn over 11 (b) On the grid, draw a cumulative frequency graph for this information. 250 300 100 80 60 40 20 0 Profit (£) Cumulative frequency (2) (c) Use your graph to find an estimate for the number of days on which the profit was less than £125 ....................................................... days (1) (d) Use your graph to find an estimate for the interquartile range. £....................................................... (2) (Total for Question 10 is 6 marks) *P66305A01224* 12 11 Cormac has some sweets in a bag. The sweets are lime flavoured or strawberry flavoured or orange flavoured. In the bag number of lime flavoured sweets : number of strawberry flavoured sweets : number of orange flavoured sweets = 9 : 4 : x Cormac is going to take at random a sweet from the bag. The probability that he takes a lime flavoured sweet is 3 7 Work out the value of x. x = ....................................................... (Total for Question 11 is 3 marks) *P66305A01324* Turn over 13 12 Express 0.11. 7 . as a fraction. You must show all your working. ....................................................... (Total for Question 12 is 3 marks) *P66305A01424* 14 13 A right-angled triangle is formed by the diameters of three semicircular regions, A, B and C as shown in the diagram. A B C Show that area of region A = area of region B + area of region C (Total for Question 13 is 3 marks) *P66305A01524* Turn over 15 14 Here is a speed-time graph. 0 2 4 6 8 10 6 5 4 3 2 1 0 Time (t seconds) Speed (m/s) (a) Work out an estimate of the gradient of t

Mostrar más Leer menos
Institución
Mathematics
Grado
Mathematics











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Mathematics
Grado
Mathematics

Información del documento

Subido en
30 de julio de 2023
Número de páginas
51
Escrito en
2022/2023
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

$7.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
carsonvalerie63

Conoce al vendedor

Seller avatar
carsonvalerie63 Walden University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
3
Miembro desde
2 año
Número de seguidores
2
Documentos
150
Última venta
10 meses hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes