100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Otro

COS3761 Assignment 2 2023 (ANSWERS)

Puntuación
-
Vendido
1
Páginas
11
Subido en
15-07-2023
Escrito en
2022/2023

COS3761 Assignment 2 2023 (ANSWERS) ASSIGNMENT 2 Please note that this is a written assignment. You need to prepare and submit a document in Word or PDF format. Predicates D(x) x is a degree M(x, y) x is a major subject of y L(x, y) x loves y H(x, y) x hates y T(x, y) x takes y Constants c Computer Science i Information Systems Table 2 QUESTION 1 Use the predicate, and constant symbols and their intended meanings given in Table 2 to translate the English sentences given below into predicate logic: Question 1.1 There is a degree with Information Systems as a major subject. Question 1.2 Everyone who loves Computer Science takes it as a major subject of a degree. Question 1.3 If someone loves Computer Science, they do not necessarily hate Information Systems. Question 1.4 Some students take Information Systems or Computer Science, but not both. Question 1.5 Some students take subjects they hate. QUESTION 2 Use the predicate, and constant symbols and their intended meanings given in Table 2 and translate the following formulas of predicate logic into English: Question 2.1 ∃x (D(x) ∧ ¬ ∃y M(y, x)) COS3761/103/0/2023 14 Question 2.2 ¬ ∀x (D(x) → M(c, x) ∨ M(i, x)) Question 2.3 ∃x ∀y L(x, y) Question 2.4 ∀x ∀y ∃z (L(x, y) → M(y, z) ∧ D(z)) QUESTION 3 Let • P and Q be two predicate symbols, each with two arguments, • f a function symbol with one argument, • c a constant symbol, and • x and y are variables. For each of the following, state whether it is a term or a well-formed formula (wff) or neither. If it is neither a term nor a wff, state the reason. Question 3.1 ∀x (P(f(c), x) ∧ Q(y, f(x))) Question 3.2 ¬ P(f(c), c) ∨ P(¬ f(c), c) Question 3.3 ∃x ∀x ∃x Q(x, x) Question 3.4 x Question 3.5 f(P(x, y)) Question 3.6 ∃x Q(c, f(f(c))) Question 3.7 P(f(f(x), f(y))) QUESTION 4 Let φ be the formula ∃x (¬ (P(x, y) ∨ ∀x P(x, z)) → ∃z P(x, x)) ∧ P(y, x) Question 4.1 Draw the parse tree of the formula and indicate the free and bound variables. Question 4.2 Suppose f is a function symbol with one argument. For each of the following substitutions, state whether it will create a problem. If there is no problem, write down the substituted formula. If there will be a problem, state how you would solve it and then write down the substituted formula. Question 4.2.1 φ[f(z) / x] Question 4.2.2 φ[f(z) / y] Question 4.2.3 φ[f(x) / y] COS3761/103/0/2023 15 QUESTION 5 Show that the following set of formulas is consistent by constructing a mathematical model where both formulas are true. Take A, the universe of concrete values, as the set of all integers. ∀x ∀y (P(x, y) → Q(y, x)) ∀x ∃y (P(x, y) ∧ Q(x, y)) QUESTION 6 You are given the formula ∀x ∀y ∀z (R(x, y) ∧ S(z, x) → S(z, y)) where R and S are both predicates with two arguments. Question 6.1 Show that the formula is satisfiable by constructing a non-mathematical model where the formula is true. Question 6.2 Show that the formula is not valid by constructing a non-mathematical model where the formula is false. For questions 6.1 and 6.2, use the set of people as the universe of concrete values, and use different human relations as the interpretations of the predicates. Explain why your model shows that the formula has the required property. QUESTION 7 Given the formula ∃x ∀y (R(x, y) → R(y, x)) does the model M below satisfy it? Explain your answer. A = {a, b, c, d} RM = {(a, b), (a, c), (b, a), (b, b), (b, d), (c, b), (d, a)} QUESTION 8 In this question you have to use the fact that a set of formulas semantically entails a single formula if the single formula is true in all models of the set of formulas. Question 8.1 Show that the entailment ∀x ∃y P(x, y) ⊨ ∃y ∀x P(x, y) does not hold by constructing a mathematical model where the formula(s) to the left of ⊨ evaluate(s) to T but the formula to the right of ⊨ evaluates to F. Question 8.2 Show that the entailment COS3761/103/0/2023 16 ∀x (Q(x) → R(x)) ⊨ ∀x (R(x) → Q(x)) does not hold by constructing a non-mathematical model where the formula(s) to the left of ⊨ evaluate(s) to T but the formula to the right of ⊨ evaluates to F. QUESTION 9 Using the rules of natural deduction, prove the validity of the following sequents in predicate logic. In all cases, number your steps, indicate which rule you are using and indicate subproof boxes clearly. Question 9.1 ∀x (P(x) → Q(x)) ⊢ ∃x P(x) → ∃x Q(x) Question 9.2 ∀x (¬ P(x) ∨ ∃y Q(x, y)), ∀x ∀y (Q(x, y) → ¬ P(x)) ⊢ ∀x ¬ P(x) Question 9.3 ∀x (P(x) → (Q(x) ∨ R(x))), ¬ ∃x (P(x) ∧ R(x)) ⊢ ∀x (P(x) → Q(x)) Question 9.4 ⊢ ∀x (P(x) → Q(x)) ∧ ∃x ¬ Q(x) → ∃x ¬ P(x) Question 9.5 ∀x (P(x) ∨ Q(x)), ∃x ¬ Q(x), ∀x (R(x) → ¬ P(x)) ⊢ ∃x ¬ R(x)

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
15 de julio de 2023
Número de páginas
11
Escrito en
2022/2023
Tipo
Otro
Personaje
Desconocido

Temas

Vista previa del contenido

, Answer:


Question 1.1:
∃x D(x) ∧ M(i, x)


Translation: There exists a degree x such that x is a major subject of Information Systems.


Question 1.2:
∀x (L(x, c) → T(x, c) ∧ M(c, x))


Translation: For all x, if x loves Computer Science, then x takes it as a major subject of a
degree.


Question 1.3:
∀x (L(x, c) → ¬H(x, i))


Translation: For all x, if x loves Computer Science, then x does not necessarily hate
Information Systems.


Question 1.4:
∃x (T(x, i) ⊕ T(x, c))


Translation: There exists an x such that either x takes Information Systems or x takes
Computer Science, but not both.


(Note: The symbol "⊕" represents exclusive OR, which means one of the statements is
true, but not both.)


Question 1.5:
∃x ∃y (T(x, y) ∧ H(x, y))


Translation: There exist x and y such that x takes y as a subject and x hates y.
$3.21
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
itsbesttutors Best Tutors
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
1494
Miembro desde
2 año
Número de seguidores
1300
Documentos
274
Última venta
1 semana hace

4.0

148 reseñas

5
77
4
32
3
16
2
5
1
18

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes