Properties
DISTRIBUTIONS
P(x) 1 =
Ifdisjoint, P(AUB) P(A) P(B) =
+
1. Bernouli:1 -Ber(p) ifp(1=1) P =
p( =0) 1
=
P
-
P(A2) 1 =
-
P(A) E(X)
·
=
P
A
r B Both A
a nd B
=
V(x) 4)
·
p. (1
=
-
AUB=A ORB is enough
De 2. Binomial:EiBer(p) independently i 1, ...,
Morgan's laws across
=
AUB)=A BE
A B
I "E i
=
(ArB)* A UBS
=
·
E(I) np=
-Bin(n,p) n'de successes en ntrials
P(A1B) P(AUBC V(x) xp. (1 p)
=
1
·
R!
=
-
-
n =
* K
k!(n k)!
4.p". (1-p)"
-
P(AUB)
-
P(A) P(B) P(AB) PMF:P(1=K)
·
=
- =
+
R! 1.
=
(1-1)....
CONDITIONAL PROBABILITY
xx
Bayes:P(AB) P(AB)
-
P(A). P(BIA) 3. Poisson:Poisson (x) ifP(1=K) e
=
PMF
· = =
=
P(B) P(B) k!
·
E(E) V(E) X.
=
=
Paracuando unknown upperlimit
·
Productr ule:P(AB1C...) P(A). P(BA). P(C/A,B)... =
4. Geometric:P(1=K) (1-p) .p.
-
=
Stop when success
LAW OFTOTAL PROBABILITY
similar to Bin, butto know total n of trials before success
P(A) [P(A1Bi) [P(Bi).P(A
=
=
BiS
DISCRETERANDOM VARIABLES
PMF of :P(x) P(A x) = -
x
· =
·
CDF 1:
of F(x) P(1-x) 2P(X)
= =
y x
·
Mean / Expectation:E(E) 2 xiP(Xi) =
Properties:if2 a.x b
=
+
1. E(z) a.E(A) b.E(Y)
=
+
2. E(X =I) E(A) =E(Y)
=
3. E(a +b) a.E(A) b =
+
·Variance:V(I):[(xi-E(E)]2.P(xi)
Properties
1. V(ax) a2.V(E)
=
2. Ifindependent:V(A + y) V(E x) V(x) v(I)
=
-
=
+
2
3. V(E) E(12)
=
-
[E(E)]
4. V!a b) V(I) +
=
·
3D:SD(A) v(x) =
IndependentEvents
P(AB) P(A) < 0
P(AB) P(A). P(B)
=
=
DISTRIBUTIONS
P(x) 1 =
Ifdisjoint, P(AUB) P(A) P(B) =
+
1. Bernouli:1 -Ber(p) ifp(1=1) P =
p( =0) 1
=
P
-
P(A2) 1 =
-
P(A) E(X)
·
=
P
A
r B Both A
a nd B
=
V(x) 4)
·
p. (1
=
-
AUB=A ORB is enough
De 2. Binomial:EiBer(p) independently i 1, ...,
Morgan's laws across
=
AUB)=A BE
A B
I "E i
=
(ArB)* A UBS
=
·
E(I) np=
-Bin(n,p) n'de successes en ntrials
P(A1B) P(AUBC V(x) xp. (1 p)
=
1
·
R!
=
-
-
n =
* K
k!(n k)!
4.p". (1-p)"
-
P(AUB)
-
P(A) P(B) P(AB) PMF:P(1=K)
·
=
- =
+
R! 1.
=
(1-1)....
CONDITIONAL PROBABILITY
xx
Bayes:P(AB) P(AB)
-
P(A). P(BIA) 3. Poisson:Poisson (x) ifP(1=K) e
=
PMF
· = =
=
P(B) P(B) k!
·
E(E) V(E) X.
=
=
Paracuando unknown upperlimit
·
Productr ule:P(AB1C...) P(A). P(BA). P(C/A,B)... =
4. Geometric:P(1=K) (1-p) .p.
-
=
Stop when success
LAW OFTOTAL PROBABILITY
similar to Bin, butto know total n of trials before success
P(A) [P(A1Bi) [P(Bi).P(A
=
=
BiS
DISCRETERANDOM VARIABLES
PMF of :P(x) P(A x) = -
x
· =
·
CDF 1:
of F(x) P(1-x) 2P(X)
= =
y x
·
Mean / Expectation:E(E) 2 xiP(Xi) =
Properties:if2 a.x b
=
+
1. E(z) a.E(A) b.E(Y)
=
+
2. E(X =I) E(A) =E(Y)
=
3. E(a +b) a.E(A) b =
+
·Variance:V(I):[(xi-E(E)]2.P(xi)
Properties
1. V(ax) a2.V(E)
=
2. Ifindependent:V(A + y) V(E x) V(x) v(I)
=
-
=
+
2
3. V(E) E(12)
=
-
[E(E)]
4. V!a b) V(I) +
=
·
3D:SD(A) v(x) =
IndependentEvents
P(AB) P(A) < 0
P(AB) P(A). P(B)
=
=