100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Lineaire Algebra 2- Samenvatting- WB Y1 Q4- TU Delft

Puntuación
-
Vendido
-
Páginas
13
Subido en
06-07-2023
Escrito en
2022/2023

Hierin een samenvatting van het Wiskunde vak in het vierde kwartaal, linaire algebra 2, van de studie Werktuigbouwkunde op de TU Delft Bevat uitleg over: Determinanten, eigenwaarden, eigenvectoren, complexe eigenwaarden, differential equations, quadratic forms, discrete dynamical systems, gramm-schmidt, constrained optimization, singular value decomposition.

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
Subido en
6 de julio de 2023
Número de páginas
13
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

17 en 18 Determinanten en applicatie
Determinant 2x2: 𝑎𝑑 − 𝑏𝑐
Determinant 3 x 3 en hoger (enkel vierkante matrixen) → Cofactor expansion
Dit kan je langs enkele rij of kolom doen (kies kol/rij met meeste 0)
𝑛 𝑟𝑖𝑗 + 𝑛 𝑐𝑜𝑙
(− 1) * 𝑎𝑛𝑚 * 𝐷𝑒𝑡(𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝑎𝑡 𝑜𝑣𝑒𝑟𝑏𝑙𝑖𝑗𝑓𝑡 𝑛𝑎 𝑛 𝑒𝑛 𝑚 𝑤𝑒𝑔 𝑡𝑒 𝑠𝑡𝑟𝑒𝑝𝑒𝑛) + ...... 𝑒𝑡𝑐 𝑙𝑎𝑛𝑔𝑠 𝑑𝑒 𝑟𝑖𝑗/𝑐𝑜𝑙
Speciale matrix: triangular matrices (driehoekje nullen links onder of rechtsboven):
Det=product van de diagonale waarden.

Wat is een determinant buiten het feit dat je hier inverses mee kan uitrekenen?
Bepaalde transformaties zorgen ervoor dat een oppervlak uitgerekt wordt (shear
transformations), de determinant van deze transformatie matrix vertelt jou eigenlijk met
welke scalar het originele oppervlak (waar je de matrix op loslaat, dus eig verzameling
vectoren) vergroot/verkleint wordt! Als je dit doet voor R3 en hoger, heb je het dus over
volumevergroting, geen oppervlaktes. hoe een rechthoek een parallellogram wordt noem je
dit in 3D een parallelepiped genoemd.Hier kan je ook eigenwaarden mee berekenen, zie hs
19.


19 Eigenwaarden en Eigenvectoren
Check of dit een eigenvector is: Av=λv, dus matrix A loslaten op een vector zorgt voor een
veelvoud van diezelfde vector, hij is met de eigenwaarde langer/korter geworden.
λ → Det(A-λI)=0 (dit is de characteristic equation)
Dit betekent eigenlijk dat we een matrix A-lambda gaan vinden waarvoor hij niet
inverteerbaar is.

Als je deze vergelijking opgelost kan je meerdere keren dezelfde λ vinden, dit geeft aan wat
de algebraic multiplicity is.
Geometric multiplicity: geeft aan hoeveel eigenvectoren corresponderen met dezelfde
eigenwaarde λ. Je kijkt dus naar dim( Null(A-λI))
De geometrische multipliciteit kan nooit hoger zijn dan de algebraic multiplicity.
De som van de algebraïsche multipliciteiten van de eigenwaarden geeft n terug (A=nxn)
Als voor elke eigenwaarde de Geo mult=alg mult, dan is A diagonaliseerbaar (HS 20)

Set eigenvectoren zijn altijd linearly independent

Bij de triangular matrices staat de eigenwaarde op de diagonaal !!!

A is alleen inverteerbaar als:
- 0 is geen eigenwaarde
- De determinant is niet nul

Rekenregels rond determinanten
- Det(AB)=Det(A)*Det(B)
- Det(A^T)=Det(A)

, - Rij optellen bij een andere rij verandert Det(A) niet
- 2 rijen verwisselen maakt Det(A) = -Det(A)
- Een rij vermenigvuldigen met een scalar r geeft, Det(A)=r* Det(A) [Det(rA) is fout!]




20 Diagonalization
Similarity
−1
Als A en B nxn matrixen zijn, dan zijn deze similar als A te schrijven is als 𝐴 = 𝑃𝐵𝑃
Als twee matrices similar zijn, dan hebben ze dezelfde characteristic polynomial, en dus ook
dezelfde eigenwaarden (inclusief hun geo-multipliciteit).




Een matrix is alleen diagonaliseerbaar als deze n linearly independent eigenvectoren heeft.
Dan kan je een eigenvector basis vormen.
−1
Een matrix A is diagonaliseerbaar als A (nxn) te schrijven is als 𝐴 = 𝑃𝐷𝑃
$5.93
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
carmenzaky1

Conoce al vendedor

Seller avatar
carmenzaky1
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
3 año
Número de seguidores
0
Documentos
2
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes