Let’s Learn
MATH
Eksponen
Andrea Fauzian
, EKSPONEN
A. Eksponen
1) Negative and zero powers
Suppose a R and a 0, then:
1 1
a) a–n = or an =
an a−n
b) a0 = 1
2) Rank Traits
If a and b are real numbers and n, p, q are positive integers, then applicable:
a) ap: aq = ap–q
b) ap× aq = ap+q
c) (a p )q = a pq
d) (a b )n = an×bn
e) (ba )n = ba n
n
Here are some examples and solutions :
PROBLEM SETTLEMENT
1 1
(125)3−(81)4 1 1
1. Value Of 1 1
1 1 =…
(8) +(25)2
3 (125)3−(81)4 (53)3−(34)4
1 1 = 1 1
2 D. 1
A. (8)3+(25)2 (23)3+(52)2
7 8
E. 5−3
B.
2 7 =
2+5
.
4
2
C.
5 = 7.
7
MATH
Eksponen
Andrea Fauzian
, EKSPONEN
A. Eksponen
1) Negative and zero powers
Suppose a R and a 0, then:
1 1
a) a–n = or an =
an a−n
b) a0 = 1
2) Rank Traits
If a and b are real numbers and n, p, q are positive integers, then applicable:
a) ap: aq = ap–q
b) ap× aq = ap+q
c) (a p )q = a pq
d) (a b )n = an×bn
e) (ba )n = ba n
n
Here are some examples and solutions :
PROBLEM SETTLEMENT
1 1
(125)3−(81)4 1 1
1. Value Of 1 1
1 1 =…
(8) +(25)2
3 (125)3−(81)4 (53)3−(34)4
1 1 = 1 1
2 D. 1
A. (8)3+(25)2 (23)3+(52)2
7 8
E. 5−3
B.
2 7 =
2+5
.
4
2
C.
5 = 7.
7