100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Edexcel A Level Maths - Pure|2023 LATEST UPDATE|GUARANTEED SUCCESS

Puntuación
-
Vendido
-
Páginas
36
Grado
A+
Subido en
24-06-2023
Escrito en
2022/2023

Natural Numbers The set of numbers 1, 2, 3, 4, ... Also called counting numbers. Integers The set of whole numbers and their opposites Z⁺ Z⁺₀ Rational Number set of all numbers that can be written as a fraction of two integers Q irrational numbers Numbers that can't be written as a fraction... examples √2 and π Universal Set A set that includes all the objects being discussed. - Ex: U = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14} Perfect Squares ax²+bx+c a & c must be squares √a x√c =b/2 then perfect square (a+b)²=a²+2ab+b² Real Numbers are the set of rational and irrational numbers How to find parameters 1) a(x+p)²+q 2) sub (-p,q) VERTEX 3) when x=0, y=c 4) rearrange to get a 5) Expand 2(x+p)² to equate to b Quadratics in disguise When one power of x is double the other E.G. x⁶+7x³-8 u=x³ u²+7u-8 solve inflection point Between TP Minimum number: Turning point - 1 (degree - 2) stationary point a point on the function where the slope (derivative) is zero degree - 1 (max) turning point A turning point on a graph is the point on the graph at which the function changes from increasing to decreasing or vice-versa. vertex degree - 1 (max) stationary inflection point degree-2 / 2 Even and odd degree even: opens on same side odd: opens on opposite side Hyperbola Exponential graph Conjecture Mathematical statement yet to be proven true Proof by deduction E.G. Prove sum of odd number are even x=2a+1 y=2b+1 x+y = 2a+2b+2 2(a+b+1) divisible by 2, therefore even proving identities Make LHS look like RHS Proof by exhaustion E.G. Prove no square number ends in 7 Look at all possible values within range that conjecture is true for 1) known theorem: all numbers ending in same digits have square numbers that end in same digit: 4²=16, 14²=196 (end in 6) 2) list: 0²=0, 1²=1, 2²=4, ... 9²=81 3) none end in 7 therefore no square number does Proof by counter example Disprove given statement cannot possibly be correct by showing an instance that contradicts a universal statement Proof by contradiction E.G Prove by contradiction that there is no largest even number 1) Assume it is not true ∴ 2n=L (largest even number) 2) Add 2 L+2 = 2n+2 =2(n+1) 3) This is even and larger than L This is a contradiction to the original assumption, since there is an even number greater than the "largest even number". Hence, the statement is true. Graphs: Axis of symmetry Vertex x= -b/2a (-b/2a, y) y=a(x+p)²+q Graph Transformations f(x)±a f(x+a) f(x-a) Up or down Move left Move right -f(x) E.G. f(x) = 1, -1, 11 Horizontal reflection E.G -f(x)= -1, 1, -11 f(-x) E.G Vertical Reflection E.G. x=-3, -x=3 therefore f(-x)= 3 subbed in 1/a f(x) squashed towards horizontal a f(x) Stretch away from horizontal f(x/a) Stretch away from vertical f(ax) Squash towards vertical 1) Multiply x term first 2) Sub into f(x) Straight lines ax+by+c E.G. y=-5/2x +4/3 y-y₁=m(∞) 1) Multiply by 2 2y=-5x+8/3 2) Multiply by 3 6y=-15x+8 3) Rearrange 6y+15x-8=0 Straight lines y-y₁/y₂-y₁ = x-x₁/x₂-x₁ E.G. (-3, 1) (3, -2) 1) Sub in y-1/-2-1 = x+3/3+3 2) Simplify and rearrange

Mostrar más Leer menos
Institución
Edexcel A Level Maths - Pure
Grado
Edexcel A Level Maths - Pure











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Edexcel A Level Maths - Pure
Grado
Edexcel A Level Maths - Pure

Información del documento

Subido en
24 de junio de 2023
Número de páginas
36
Escrito en
2022/2023
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

$12.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
GUARANTEEDSUCCESS Chamberlain College Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
652
Miembro desde
3 año
Número de seguidores
314
Documentos
24895
Última venta
2 semanas hace
Elite Exam Resources: Trusted by Top Scorers!!!!!!!!

Stop guessing. Start dominating!! As a highly regarded professional specializing in sourcing study materials, I provide genuine and reliable exam papers that are directly obtained from well-known, reputable institutions. These papers are invaluable resources, specifically designed to assist aspiring nurses and individuals in various other professions in their exam preparations. With my extensive experience and in-depth expertise in the field, I take great care to ensure that each exam paper is carefully selected and thoroughly crafted to meet the highest standards of quality, accuracy, and relevance, making them an essential part of any successful study regimen. ✅ 100% Legitimate Resources (No leaks! Ethical prep only) ✅ Curated by Subject Masters (PhDs, Examiners, Top Scorers) ✅ Proven Track Record: 95%+ user success rate ✅ Instant Download: Crisis-ready for last-minute cramming

Lee mas Leer menos
4.4

248 reseñas

5
161
4
37
3
32
2
12
1
6

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes