100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting - Wiskunde 'Module 7; tweedegraadsvergelijkingen en -ongelijkheden' GO! Onderwijs

Puntuación
-
Vendido
-
Páginas
6
Subido en
24-06-2023
Escrito en
2022/2023

Dit document is een samenvatting van 'Module 7; tweedegraadsvergelijkingen en -ongelijkheden', uit het boek 'NANDO 4D' voor het vak Wiskunde in het GO! Onderwijs in de doorstroomfinaliteit/ASO.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Escuela secundaria
Estudio
2e graad
Grado
Año escolar
4

Información del documento

Subido en
24 de junio de 2023
Número de páginas
6
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

Tweedegraadsvergelijkingen en -ongelijkheden

1. ONTBINDEN IN FACTOREN

1.1 Gemeenschappelijke factor afzonderen
Methode
STAP 1: Voor de haakjes plaats je de factor die in elke term voorkomt:
- de coëfficiënt is de grootste gemene deler van de voorkomende coëfficiënten
- de gemeenschappelijke letters in hun laagst voorkomende exponent.
STAP 2: Tussen de haakjes plaats je het quotiënt van de veelterm met de factor die voorop werd
geplaatst.
Voorbeelden
9x² − 6x + 15 = 3 ⋅ (3x² − 2x + 5)
√2r − √8 = √2 ⋅ (r − 2)
1.2 Een tweeterm van de vorm a² - b² ontbinden
Methode
Heb je een merkwaardige tweeterm van de vorm a² - b², dan kun je de tweeterm ontbinden volgens
de formule a² - b² = (a + b) · (a -b).
Voorbeelden
x² − 9 = (x + 3) ⋅ (x − 3)
-1,21h² + 0,64 = (0,8 + 1,1h) ⋅ (0,8 − 1,1h)

1.3 Een drieterm van de vorm a² + 2ab + b² ontbinden
Methode
Heb je een merkwaardige drieterm van de vorm a² + 2ab + b², dan kun je de drieterm ontbinden
volgens de formule a² + 2ab + b² = (a + b)².
Voorbeelden




1.4 Meerstapsoefeningen
Methode
STAP 1: Plaats de gemeenschappelijke factoren buiten de haakjes. Tussen de haakjes plaats je het
quotiënt van de veelterm met de factor die voorop werd geplaatst.
STAP 2: Heb je een merkwaardige tweeterm van de vorm a² - b²,
pas dan de formule a² - b² = (a + b) · (a -b) toe.
Heb je een merkwaardige drieterm van de vorm a² + 2ab + b²,
pas dan de formule a² + 2ab + b² = (a + b)² toe.
STAP 3: Herhaal stap 2 tot je niet meer verder kan ontbinden.
Voorbeelden
45x² − 5 = 5(9x² − 1)
= 5(3x + 1)(3x − 1)
x8 − 1 = (x4 + 1)(x4 – 1)
= (x4 + 1)(x² + 1)(x² − 1)
= (x4 + 1)(x² + 1)(x + 1)(x − 1)
= (x4 + 1)(x² + 1)(x + 1)(√x + 1)(√x - 1)

, 2. VERGELIJKINGEN VAN DE TWEEDE GRAAD

2.1 Definities
De nulwaarden van de functie f met voorschrift f(x) = ax² + bx + c (waarbij a ≠ 0) vinden we door de
volgende vergelijking op te lossen: ax² + bx + c = 0.
We noemen dit een tweedegraadsvergelijking of een vierkantsvergelijking.
De oplossingen van een veeltermvergelijking noemt men ook de wortels van de vergelijking.
Als b en/of c ontbreekt in een vergelijking en dus waarbij b en/of c gelijk is aan 0, dan spreekt men
van een onvolledige vierkantsvergelijking.
Als alle coëfficiënten a, b en c verschillend zijn van 0, spreekt men van een volledige
vierkantsvergelijking.

2.2 Onvolledige vierkantsvergelijkingen
Vergelijkingen van de vorm x² = k
Hierbij neem je de vierkantswortel van k om x te berekenen, waardoor je 2 mogelijke oplossingen
hebt aangezien de vierkantswortel van bijvoorbeeld 9, 3 maar ook -3 kan zijn.
Vergelijking van de vorm ax² + bx = 0
Hierbij zal je eerst moeten ontbinden in factoren, dit doe je door de gemeenschappelijke factor x af
te zonderen. Hierdoor weet je niet precies wat de oplossing is, dus zeg je dat x = 0 maar voor de
andere oplossing, los je de vergelijking op, zonder de gemeenschappelijke factor x.
Voorbeeld
2x² − 5x = 0
x(2x − 5) = 0
x = 0 of 2x − 5 = 0
5
x = 0 of x =
2

2.3 Volledige vierkantsvergelijkingen
Eigenschappen
De vergelijking ax² + bx + c = 0 heeft 0, 1 of 2 oplossingen, afhankelijk van het teken van de
discriminant D = b² - 4ac.
- twee oplossingen als D > 0
- één oplossing als D = 0
- geen reële oplossing als D < 0
Als de vergelijking ax² + bx + c = 0 een positieve discriminant D heeft, dan zijn de oplossingen van de
−b + √D −b − √D
vergelijking gelijk aan: x1 = 2a
en x2 = 2a
Als de vergelijking ax² + bx + c = 0 een discriminant D heeft die gelijk is aan 0, dan is de oplossing van
−b
de vergelijking gelijk aan: x = 2a
$6.06
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
thibauttaminiau Katholieke Universiteit Leuven
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
71
Miembro desde
2 año
Número de seguidores
22
Documentos
339
Última venta
1 semana hace

3.8

12 reseñas

5
5
4
3
3
2
2
0
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes