100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Résumé Structure Algébrique 2

Puntuación
-
Vendido
-
Páginas
8
Subido en
14-06-2023
Escrito en
2021/2022

Cette fiche est une suite qui résume le concept de la structure algébrique. En parcourant ses pages, vous découvrirez un recap sur les espaces vectoriels, sur les applications linéaires ainsi que de la réduction.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
14 de junio de 2023
Número de páginas
8
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

^
Rappels sur les espace vectoriels


Définition

Un espace vectoriel sur un corps 1K est un triplet ( V
,
+, .
) OÙ


V est un ensemble

+ est une opération interne Vxv →
v est appelé addition





est opération externe IKXV →
v appelé multiplication par scalaire
• .


une un



tq I .
Ku ,
v ,
w E V
,
u + Cv + w ) =
( u + v ) + w



2. 70 C- V
,
tu C- V
,
V + 0
=
0 tu
=



KV E Z V
tq
=
3. V W E ✓ + w W tu =
0
,


4 Fr
t
E V
=
W W tu v + w
,
.


,



5. tt
, µ C- 1K tu c- V
,
X . (µ V ) =
( ✗µ) . ✓
,
.




6 FV E V 1 V -
=
V
,
.

.




7. V1 E IK HVEV, (✗ +
µ) V ✗ v + µ ✓
µ
=
-




,
- .




,



8. KX C- 1K
,
Kv ,
w E V
,
X .

(✓ + w ) =
✗ ✓ .
+ ✗ .
W


-




l Les
génériques
:

.




"

Les IR -




espaces vectoriels
:
Rn ,
R [ ×] ,
IRN ,
c ( [ 0,1 ] , IR ) . .




"

Les 1k -



espaces vectoriels :
1km
,
1K [ ×] ,
IKN ,
E

2. Des choses que vous avez déjà croisées

Le ¢ espace vectoriel des fonctions périodiques IR à valeurs dans ¢

-

sur .





Le R -




espace vectoriel ¢ ,
les Q -


espaces vectoriels ☒ [i] , ☒ [ F2 ]



Définition
_




Une base d' une 1K -



espace vectoriel V est une famille ( ei ) de vecteurs de

V
tq
:
ttx c- V il existe une unique famille de scalaires ( ti ) d' éléments de

1K dt seul un nb fini d' ④ émts est non nul et


Exjej
=




Théorème
-




Tout IK espace vectoriel admet des bases
-




Définition

On appelle dimension d' un 1K -


espace vectoriel le cardinal commun de ses bases
]
Exemple : "
1km est un 1K -




espace vectoriel de dimension n



¢ clim dim

est un ¢ -



esp . rect .
de 1 mais IR -



espace rect .
de 2 .




☐ 1kW est un 1K -



espace vectoriel de dimension infinie

, 2
Rappels sur les applications linéaires


Définition
-




Une application UK -

linéaire ) entre 2 K -




esp .
rect .
V, W est une application

f- :
✓ → w
tq
> × C- V f- ( ✗ + ) =
f- ( x) t f- ( y )
, y , y
>
FX E IK FX E V FCN ) =
✗ f- [ × )
, ,

-




Qd les 1K espaces vectoriels V et W dim finies de taille ( mm )

-

sont n
,
m matrice


M
=
[ f- (
Vj ) i ] des coordonnées des Fcvj ) dans la base (Wi ) i
ij
Fx =
MX




Théorème
.




L' application Q :
Lik ( V , W) →
M.mn ( IK )


f-

Mu , w (f)


envoie F matrice dans les bases V W est un isomphisme
qui sur sa
,




3
Rappel de réduction


Définition
-




Soit f V
endomorphisme On valeur de F tt

appelle ✗ Elk
:
v un .



propre

lequel f- ( )
il existe ✗ =/ 0
tq ✗×
=


pour x


Un vecteur satisfait la relation dessus est dit

qui ci vecteur propre
-




de F associé à la valeur propre × .




Les valeurs propres sont les racines Xfct)
=
det ( MF -

ti )


Diagonaliser un
endomorphisme F revient a- trouver une base ( ui ) i de ✓

constituer de valeurs propres .




On sait que F est
diagonalisable
:






si XF est scindé à racines simples
F matrice
si admet symétrique


une




Théorème -




F
Un endomorphisme sur 1K espace vectoriel est
trigonal isable Ssi ✗f scindé sur 1k
-
$5.90
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
elenaflt

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
elenaflt EPITA
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
2 año
Número de seguidores
2
Documentos
3
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes