100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Statistics notes

Puntuación
-
Vendido
-
Páginas
2
Subido en
15-05-2023
Escrito en
2022/2023

This is a collection of notes I took, summarizing reading material provided to me by my university. there are some highlighted points talking about figures or diagrams- please ignore those because the visuals weren't pasted into the document. instead, consider these notes as general definitions and explanations of key statistical terms. It isn't detailed or authentic- its just notes I took.

Mostrar más Leer menos
Institución
Grado








Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
Desconocido
Subido en
15 de mayo de 2023
Número de páginas
2
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

Factor analysis.

 multiple regression always postulates that one variable is dependent on other variables (add
this to multiple regression)>
 wish to reduce the complexity of our problem by reducing the number of variables being
studied
 Factor analysis has two main goals: 1. Data reduction 2. Detection of structure
 e two main classes of factor analysis: confirmatory factor analysis (CFA) and exploratory factor
analysis (EFA).
 Factor analysis assumes that the variables we measure are often manifestations of deeper,
underlying (or ‘latent’) variables.
 Latent variables generate or produce manifest variables, which are things we can observe and
measure.
 Another name for ‘latent variable’ is ‘factor’.
 A factor (or latent variable) is a hypothetical construct that generates (or represents) a set of
observed variables.
 A factor loading can be thought of as the correlation of an observed variable with a factor
 two main aims of factor analysis:
1. A desire to reduce complexity by reducing the number of variables in an analysis
2. A desire to find structure in the world by identifying the latent variables that underlie
observed data.
 frequently used kinds of factor analysis under EFA (exploratory factor analysis) are principal
component analysis (PCA) and principal factor analysis (PFA).
 PCA seeks a convenient, smaller set of basis variables, and PFA seeks an underlying, meaningful
structure
 When we combine a few similar factors into 1 construct, we lose the variance (less in the
dataset I guess)
 Its okay to lose some variance as long as its small.
 component extraction in a PCA proceeds by extracting eigenvectors (or components) that
resolve maximal variance.
 Analyse | Dimension Reduction | Factor – choose variables.
 We need to decide how many values we want to retain or combine, based on how much
variance we losing.
 Two frequently used rules of thumb are the Kaiser eigenvalue rule and the Cattell scree-plot
rule.
 Kaiser eigenvalue rule encourages the acceptance of only those components with an
eigenvalue greater than 1.
 the scree-plot rule, a line plot is drawn of the eigenvalues and arranged in descending order.
 high eigenvalues representing the peak, and the low values the scree
 where the slope descends into the scree is where the components stop being interpretable
and should be rejected
 scree plot is under display for when doing factor analysis/
 A newer method of deciding how many components to extract in a PCA is Horn’s parallel
analysis. Generate some fake correlations and get eigenvalues for them. Its nonsense data.
 If an eigenvalue from our data is greater than the corresponding eigenvalue from the random,
uncorrelated data, we can conclude that there is a ‘true’ component explaining the variance in
the variables.
$10.00
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
deemishagovender

Conoce al vendedor

Seller avatar
deemishagovender University of KwaZulu-Natal
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
2 año
Número de seguidores
0
Documentos
9
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes