100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Math 100 UBC/UBCO full course notes 20+ pages

Puntuación
-
Vendido
-
Páginas
22
Subido en
14-05-2023
Escrito en
2022/2023

From start to finish MATH 100 notes with practice problems and examples 20+ pages full of notes and graphs and examples. ORGANIZED.

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
14 de mayo de 2023
Número de páginas
22
Escrito en
2022/2023
Tipo
Notas de lectura
Profesor(es)
Wayne broughton
Contiene
Todas las clases

Temas

Vista previa del contenido

MATH108

101

, ↑ AF(z) 1 % % with wasne.D

TUESDAY JC 10 Introduction
-
to limits


-> pre-cpic review:


1. Given that x=2 is of
proot x3-x-2x+12. factor the polynomial completely and findall i ts roots
of
-

>Che(R: 23 22
- -
8(2) 12 +
X-2 is a f (( +0r


8
= -

4 -
16 12
+ -
x3 -
x" -
8X 12 +
(X
= -
2)(X +x -
6)

(x -
2) (x + 3) (X -
2) The roots are x 1
=

andX = -
3




2.x z
-



x2 +1 -



- rte1)

4(x- ( -
1)- xe
(X
- -
-




2
x -
1




>12 -
2x 1+
-
y2 -
1
=



-
2X

xz - 1 xz -
1




3. Find the equation of
t he line that
p asses through the points (2,5) and 1-1, 2) in the plane
xx

5-1
Findslope
=
->

2 -
1 -
1)

following:y-Y' m(X X')

= -




-> y 3/2X 6
=
+


y
- -
3 3/2(X 2)
= -




3/2X
=
-

3 5 +




1 3/2x 2
=
= +




4. Findthe exact value of COS(-π /6)
7 L
68
2
v 45
=1880:300 using special triangle
=




2452
1

v/2 38
13 1




THURSDAY, JAN 12:PRECALL & INTROTO CALC


1

1: X X 8
=
REFRESHON BASIC GRAPHS

shifted sin (X) graph
M




L
Shifted COS(X) grOPM Y:COS(X) Domain:x0 or



1.Sin (X)
(0,0)u(0,p)

EcosixOY ↳ <
1 >




*
-




2



-
- 1




1:109eX:10n 1


y: 109 - XM Y:109 X
> 7
[0,0 1 -
1 Exponential fxn: y.e*
1 ⑲
Xx,0 ④

&
i
U:104b(V)


V =bu




·finan
piecewise fXn
>




9
Y :(X/,0 ·
(x) X,X>,0

D:( -8,0) Range:1R -

X, ifX <0
↳(0,0
Y: arc an(X)
+




#
I tan(x) 20 (X)
= +

,-> calculus:single variable -> differential (aboutr ates change) the
of main concept is the derivative


·unifiying theme:limits


Limits:Chapter 2 Introducing limits
~If itisitwill
-> -> cause the answer



·consider y f(x) xx 1 x 1 = what is f164)?
:=I 3 i s the
what domain t he
of flx)? x, andx*I
- = -
=
=




x5 -
5x 3 -
1

<(0,1) UC2, 0) - know how to write/readinterval notation


o The graph of this fan seems to keep going
through x 1
=

(where its under), o f(x) near
lets 100k x 1
=




+ (0.9):80.9-1=1.48698.... -> a bit bigger f(1.1) 1.51203=
or even closer to 1 f(0.99):1.490743/f (1.01):1.501245 (f(0.9999):1.499988
29-1
f(1.00001):1.50003// As x gets closer to 1 the fan gets closer to 1.5


· s eems that f(x) is
It getting closer to 1.5 as s ets
x closer to 1:this is the behavior f (x) nedr
of 1
x=


mathematically) we can make f(x) as close
This turns out to be true (can be proved
->
to 1.5 as we want close) if we use
carbitrarily any X value "close


enough"to 1 limit notation


We say the
*
o f f(x):x-1
limit is 1.5 as x approaches 1 im f(x):1.5
x 1
"3-1
->




x
or we can write it out as f(x)-1.5


CS X -
1


7/3 25
-> Now consider f(x) for near
x x 64 f(64)
we know that is or so what
doesMyfex) mean
-
=




of (63.9):2.33287 1 + (63.99999):2.3333287 (f(64.00001):2.333379

25 =
tyMyf(x):
It looks like f(x) is getting
arbitrarily
close to as x is getting close to 64 2


5 253 same
(imf(x) f(64): question
answer, different
so 2
= =




TUESDAY JAN #3
17:LECTURE

LIMITS:CIP1.2 -> Instantaneous velocity

-> If I travel 8 0km/h
at for 1 hr, then I have gone 80km. or i travel 160km in 2 hours, or in one minitravel 800 8/6km
=




over time period:distance travelled
>velocity
time taken




0 What does m ean
it to be going 80
at km/h at one point in time (an instant)?


I
travel a distance in time so v =

Ca "
-> We lookata time interval around instant:
that >t


we can define aus velocity:a travelled on thatinterval = change in position
length of time change in time




As
* interval
that gets shorter & shorter, the due velocity
a pproaches a limit
value -> t he
That limiti s the instantaneous velocity
-




CLP-1:1.3 - EXPLORING LIMITS


taking enough"to the (x+a)
0ximf(x)=L:means we can make f(x) as close to (as we like ("arbitrarily
close"), by X "close a
value of




-.
-
AMPLE:
Dimsincx), since is defined
not at 10bc is



sincxl
-> x X sin(0.1) 0.998334.....
=

3 i n trig fans is in radians
in calculus, we assume x
0.10.448334 8.2




Whatifwe use -0.1: same:0.998334


0.01:0.999983 -
8.82:0.99999....
I It180ks like
MMsincx)
y
X
= 1 This turns out to be true!




2(1m(x+2): in
we plug
cant x 2 Yes we could (and is the rightanswer), but limit
w hat
t hats not
-
=




means


↳ 1.999:(1.999) +2 5.996001:It100ks like =




imz (x+ 2) is the same as 22 +

2 6 =




-mes Dlim doesnt
exist


EG#3) Le f(x) +
sin),
=

for x is
=O- what
limo sin(i)? H(t)




I
SAS x =
0, gets larger (+ or -- so sink) oscillates faster faster btwn-1 and 1


so
him sin(i) DNE:sin(A) does not "settle down"close to one value justkeeps
it jumping again
away
1


4) "Differentvalues on the sizes
left andright -> H(t):
Let

Goit 1 if
+ co


t >I
-
t
8

H:heavyside txn
$16.30
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
femkaotto-babin

Conoce al vendedor

Seller avatar
femkaotto-babin UBC
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
2 año
Número de seguidores
0
Documentos
8
Última venta
-

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes