100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Stochastic Processes II - Lecture Notes

Puntuación
-
Vendido
-
Páginas
28
Subido en
06-05-2023
Escrito en
2010/2011

Columbia Business School - First Year of the Doctoral Program in Decisions, Risk and Operations • Stochastic processes o Notes from Prof Assaf Zeevi's "Foundations of Stochastic Modelling". o Notes from Prof David Yao's "Stochastic Processes II".

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Grado

Información del documento

Subido en
6 de mayo de 2023
Número de páginas
28
Escrito en
2010/2011
Tipo
Resumen

Temas

Vista previa del contenido

Stochastic Processes II Page 1



STOCHASTIC PROCESSES II

PART I – MARTINGALES


Conditional expectations
 Measure theory
o In a probability space (W,  , ) , a sigma field  is a collection of events, each of
which as a subset of W . It satisfies (i) Æ Î  (ii) A Î   Ac Î  (iii)
Ai Î   Èi¥=1 Ai Î  . Notes:
 (i) and (ii)  W Î 

( )
c
¥ ¥
  A =
i =1 i
Ac , so also closed under infinite (and finite) intersection.
i =1 i


o A random variable maps X (w) : W   . When we say X is measurable with
respect to  and write X Î  , we mean {w : X (w) £ x } Î  "x .

 Conditional expectations
o (X | Y ) is a random variable. (X | Y )(w) =  (X | Y = Y (w)) . In other words,

the fact Y = Y (w) “reveals” a “region” of W in which we are located. We then
find the expected value of X given we are in that “region”.
 In terms of the definition below, we can write (X | Y ) = (X | s(Y )) ,
where s(Y ) is the sigma-field generated by Y – in other words,

s(Y ) = {{w : Y (w) £ x } : x Î } – every event can would be revealed by

Y.
o W = (X | ) is a random variable. (X | )(w) is a bit harder to understand –
effectively, it takes the expectation of X over the smallest  that contains w . In
other words, let A be the smallest element of  that contains w – then we
restrict ourselves to some region of W and find the expectation over that region;
(X |  )(w) = (X A ) . Formal properties:




Daniel Guetta

,Stochastic Processes II Page 2


 W Î  : information as to where we are in W only ever “reaches” us via
knowledge of which part of  we’re in, so this is obvious.
  (W A ) =  (X A ) for all A Î  : we are now restricting ourselves to a

region of W that is  -measurable. Provided A is the smallest element for
which w Î A , W (w) = (X A ) , and the result follows trivially. (If it is
not the smallest element, the result requires additional thought).
o Some properties
i.  éêëX |  ùúû if X Î 

ii.  éê  éêëX |  ùúû ùú = (X )
ë û
iii.  (XZ |  ) = Z  (X |  ) if Z Î 

iv. Tower:  éê  (X |  ) |  ùú =  (X |  ) if  Í  : in this case,  is “more
ë û
descriptive” than  , so the result makes sense.

( ( ) )
Proof: Use    (X |  ) |  A =   (X |  ) A ( ) for A Î  . Then use

the fact that A Î  to show this is equal to  (X A ) . 

v. Linearity

(
vi. Jensen’s: for convex f,  éêë f (X ) |  ùûú ³ f  éêëX |  ùúû )
o Notes
  éêëX ùúû =  éêëX | {Æ, W}ùúû (the RHS is a constant, because whatever w we

choose, the only element of {Æ, W} that contains it will be W ). Thus, (ii)
is a special case of (iv).
 Integrability of X implies integrability of  éêëX |  ùûú :
(vi) (ii)
 
é
ë
ù
û ë (
 ê (X |  ) ú £  éê  X |  )ù =  X
ûú ( )
o Example: Let W be countable. Let  = {1 , 2 , } be a partition of W , and 
å w Î i X ( w )( w )
be the set of all subsets of  . Then (X |  ) takes value ( i )
with

probability (i ) .




Daniel Guetta

, Stochastic Processes II Page 3


Proof: Clearly, the RV is  measurable, because each value it can take is

defined by a i . Also,  éêë (X | )A ùûú is the expected value over those i Í A .

Clearly, =  éëêX A ùûú . 



Martingales
 Definition: {Xn } is a sub-martingale with respect to {n } (where n Î n+1 ) if
i. X n Î n
ii. (X n ) < ¥ [it is often convenient to work with the stronger condition

 Xn < ¥ ].

iii.  éëêXn +1 | n ùûú ³ Xn [< gives a super-martingale, = gives a martingale]. Implies the

weaker property  éêëXn +1 ùûú ³  éëêXn ùûú

 Remarks:
o A convex function of a martingale is a submartingale.
o An increasing convex function of a submartingale is a submartingale.
Proof: (i) and (ii) are simple.  éêë f (Xn +1 ) | n ùúû ³ f ( [Xn +1 | n ]) ³ f (Xn ) . 

å
n
 Example: Let S n = i =1
X i , where the Xi are IID with (Xi ) = 0,  Xi < ¥
o Sn is a martingale [  Sn £ n  X1 ] (the mean martingale).

o If ar(X i ) = s 2 < ¥ , X n2 - s 2n is a martingale (the variance martingale). 
qX1 qSn
 Example (the exponential martingale): Let j(q) = (e ) . Mn = e / jn (q) is a

å
n
martingale. For example, if S n = i =1
Xi is an asymmetric random walk with

( )
Sn
1-p
p = (X i = 1) = 1 - (X i = -1) , then M n = p
is an exponential martingale, with
1-p
eq = p
and j(q) = 1 . 
 Example: Suppose an urn starts with one black and one white ball. We pull out balls
from the urn, and return them to the urn with another, new ball of the same color. Yn,
the proportion of white balls after n draws, is a martingale (mean ½). 
 Example: Let {Xn } be a Markov Chain with transition matrix P(x, y) and let h(x) be a
bounded function with h(x ) = å y p(x, y )h(y ) . {h(Xn )} is then a martingale. 




Daniel Guetta
$2.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
tandhiwahyono
2.0
(1)

Conoce al vendedor

Seller avatar
tandhiwahyono University of Indonesia
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
8
Miembro desde
3 año
Número de seguidores
8
Documentos
861
Última venta
1 año hace
iKnow

The iKnow store provides course materials, study guides, study notes, lecture notes, textbook summaries and exam questions with answers, for levels from high school students to universities and professionals. Everything with the best quality and world class.

2.0

1 reseñas

5
0
4
0
3
0
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes