100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

Assignment-5 with Correct Answers Michigan Technological University MATH MA 5790

Puntuación
-
Vendido
-
Páginas
37
Grado
A+
Subido en
15-04-2023
Escrito en
2022/2023

Assignment 5 Raghavendran Shankar 1. The hepatic injury data set was described in the introductory chapter and contains 281 unique compounds, each of which has been classified as causing no liver damage, mild damage, or severe damage (Fig. 1.2). These compounds were analyzed with 184 biological screens (i.e., experiments) to assess each compound’s effect on a particular biologically relevant target in the body. The larger the value of each of these predictors, the higher the activity of the compound. In addition to biological screens, 192 chemical fingerprint predictors were determined for these compounds. Each of these predictors represent a substructure (i.e., an atom or combination of atoms within the compound) and are either counts of the number of substructures or an indicator of presence or absence of the particular substructure. The objective of this data set is to build a predictive model for hepatic injury so that other compounds can be screened for the likelihood of causing hepatic injury. Start R and use these commands to load the data: (a) Given the classification imbalance in hepatic injury status, describe how you would create a training and testing set. A: We use stratified random sampling to split the data to cope up with the imbalance in hepatic injury status. Stratified random sampling is used to split the training and test data in balance according to the hepatic status label (None, Mild, Severe) using CreateDataPartition() method. (b) Which classification statistic would you choose to optimize for this exercise and why? A: Accuracy is used as a classification statistic. Accuracy can be used to optimize as it make good decisions to select optimal model for training and testing set. Accuracy tells how good a classification model is functioning. (c) Split the data into a training and a testing set, pre-process the data, and build models described in this chapter for the biological predictors and separately for the chemical fingerprint predictors. Which model has the best predictive ability for the biological predictors and what is the optimal performance? Which model has the best predictive ability for the chemical predictors and what is the optimal performance? Based on these results, which set of predictors contains the most information about hepatic toxicity? A: Biological Data: GLM:

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Grado

Información del documento

Subido en
15 de abril de 2023
Número de páginas
37
Escrito en
2022/2023
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Assignment 5
Raghavendran Shankar

1. The hepatic injury data set was described in the introductory chapter and
contains 281 unique compounds, each of which has been classified as causing no
liver damage, mild damage, or severe damage (Fig. 1.2). These compounds were
analyzed with 184 biological screens (i.e., experiments) to assess each
compound’s effect on a particular biologically relevant target in the body. The
larger the value of each of these predictors, the higher the activity of the
compound. In addition to biological screens, 192 chemical fingerprint predictors
were determined for these compounds. Each of these predictors represent a
substructure (i.e., an atom or combination of atoms within the compound) and
are either counts of the number of substructures or an indicator of presence or
absence of the particular substructure. The objective of this data set is to build a
predictive model for hepatic injury so that other compounds can be screened for
the likelihood of causing hepatic injury. Start R and use these commands to load
the data:
(a) Given the classification imbalance in hepatic injury status, describe how you
would create a training and testing set.
A: We use stratified random sampling to split the data to cope up with the imbalance in
hepatic injury status. Stratified random sampling is used to split the training and test data
in balance according to the hepatic status label (None, Mild, Severe) using
CreateDataPartition() method.
(b) Which classification statistic would you choose to optimize for this exercise and
why?
A: Accuracy is used as a classification statistic. Accuracy can be used to optimize as it
make good decisions to select optimal model for training and testing set. Accuracy tells
how good a classification model is functioning.


(c) Split the data into a training and a testing set, pre-process the data, and build models
described in this chapter for the biological predictors and separately for the chemical
fingerprint predictors. Which model has the best predictive ability for the biological
predictors and what is the optimal performance? Which model has the best predictive
ability for the chemical predictors and what is the optimal performance? Based on
these results, which set of predictors contains the most information about hepatic
toxicity?
A:
Biological Data:
GLM:

,PLSDA:

,
, LDA:




GLMNET:
$8.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
ExamsConnoisseur Self
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
567
Miembro desde
3 año
Número de seguidores
344
Documentos
1497
Última venta
1 semana hace

4.3

67 reseñas

5
40
4
11
3
12
2
1
1
3

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes