100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Mathematics/2023 NCERT part 1 -:matrices and determinants

Puntuación
-
Vendido
-
Páginas
19
Subido en
12-04-2023
Escrito en
2022/2023

MATRICES and DETERMINANTS all important questions and formulas with easy explanation from a certified mentor . it is a spread sheet that will give you a closer look on both the topics thoroughly, very advisable to go through it before exams as a great last minute revision

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Escuela secundaria
Año escolar
5

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
Chapter 3 and 4
Subido en
12 de abril de 2023
Número de páginas
19
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

MATRICES
A rectangular arrangement of numbers (elements) in rows and columns is called a Matrix.

Order of A matrix with m rows and n columns is called as matrix with order m X n
Matrix A = [aij]m X n

Construction of Matrix
Construct a matrix of order m X n with A = [a ij] where i represents the respective row and j represents the
respective column

Types of Matrices
Row Matrix A = [aij]m X n with m =1

Column Matrix A = [aij]m X n with n =1

Singleton Matrix A = [aij]m X n with m = n = 1

Null Matrix A = [aij]m X n, aij = 0 for all i and j

Square Matrix A = [aij]m X n with m = n

In a square matrix if all the elements other the principal diagonal elements are 0
i.e. in A = [aij]m X n, aij = 0 for all i ≠ j

 The elements of a square Matrix for which i = j are called as diagonal elements. The line
joining these elements is called the principal diagonal.
 No element of principal diagonal in diagonal matrix is zero
 No. of zero’s = n2-n

Diagonal Matrix Scalar If all the elements of principal diagonal in diagonal matrix are equal
Matrix i.e. in A = [aij]m X m, aij = 0 for all i ≠ j
= K for all i = j

If all the elements of principal diagonal are 1 and all the other elements
Unit/Identity are 0.
Matrix i.e. in A = [aij]m X m, aij = 0 for all i ≠ j
= 1 for all i = j

Upper triangular A square matrix [aij] with aij = 0 when i > j
Matrix

Lower triangular A square matrix [aij] with aij = 0 when i < j
Matrix

Equal Matrix Two matrices are equal if they are of same order and their corresponding elements are

, equal.

Periodic matrices Ak+1 = A, K ≥ 1; where k is the period of the matrix

Nilpotent matrices An = 0, An+1 = 0, An+2 = 0 but An-1 ≠ 0 (n -> Index of matrix)
 IAI=0

Orthogonal matrices are square matrices which, when multiplied with its transpose matrix
results in an identity matrix.
i.e. A. AT = I = AT. A
Orthogonal Or AT = A-1
matrices [a1 a2 a3]
A = [b1 b2 b3] then a12 + a22 + a32 = b12 + b22 + b32 = c12 + c22 + c32 = 1 and
[c1 c2 c3] a1b1 + a2b2 + a3b3 = b1c1 + b2c2 + b3c3 = a1c1 + a2c2 + a3c3 = 0
 IAI=±1

Idempotent matrices are square matrices which, when multiplied with itself results in the
given matrix.
Idempotent i.e. A2 = A
2 3 4 5
Matrices  A=A =A =A =A …
 I A I = 0 or 1
 Idempotent matrix is either singular or Identity matrix.

Involuntary matrices are square matrices in which
Involuntary A2 = I Or A-1 = A
Matrices  Aodd = A; Aeven = I
 IAI=±1

ADDITION AND SUBTRACTION OF MATRICES
If A = [aij] m x n and B = [bij] m x n are two matrices with same order then
A + B= [aij + bij] m x n
A - B= [aij - bij] m x n

Properties of Matrix Addition
Commutative Property A+B=B+A
Associative Property A + (B + C) = (A + B) + C
Additive identity A + O = A ( where O is an additive identity)
Additive inverse Additive inverse of A will be -A
Cancellation Law A + B = A + C => B = C
B + A = C + A => B = C

Addition and Subtraction of diagonal Matrices
If A = Diag (a1, a2, a3….an); B = Diag (b1, b2, b3….bn) then
A + B = Diag (a1+ b1, a2+ b2, a3+ b3….an+ bn)
A - B = Diag (a1- b1, a2- b2, a3- b3….an- bn)

, SCALAR MULTIPLICATION OF MATRICES
If A = [aij]m × n is a matrix and k is a scalar, then kA = k [a ij]m×n

Properties of Scalar Multiplication of a Matrix
k(A + B) = kA + kB, (k + l) A = kA + lA (K.I) A = K.(I.A) = I. (K.A) (-K). A = (-K. A) = K.(-A) (-1). A = -A

MULTIPLICATION OF MATRICES
If A = [aij] m X n & B = [bij] p X q then A X B will be defined only when n = p. A X B will be of order m X q

Properties of Multiplication of a Matrix
Not Commutative AB ≠ BA
Associative A(BC) = (AB)C [Order remain same]
Distributive  A (B + C) = AB + AC (Multiplication from left)
 (A + B) C = AC + BC (Multiplication from right)
Multiplicative Im A = A In = A
No Cancellation law AB = BC => A ≠ C
AB = 0 Does not mean either A = 0 or B = 0
Multiplication of two diagonal matrices always result in diagonal matrices
Multiplication of two triangular matrices always result in triangular matrices
Multiplication of two scalar matrices always result in scalar matrices

If A & B are of same order then
If A & B are commutative (AB = BA) If A & B are anti commutative (AB = -BA)
(A+B)2 = A2 + B2 + AB + BA = A2 + B2 + 2AB (A+B)2 = A2 + B2 + AB + BA = A2 + B2
(A-B)2 = A2 + B2 - AB – BA = A2 + B2 - 2AB (A-B)2 = A2 + B2 - AB – BA = A2 + B2
(A-B) (A+B) = A2 - B2 + AB – BA = A2 - B2 (A-B) (A+B) = A2 - B2 + AB – BA = A2 - B2 + 2AB
2 2 2 2
(A+B) (A-B) = A - B - AB + BA = A - B (A+B) (A-B) = A2 - B2 - AB + BA = A2 - B2 + 2BA
2 2
(I + A) = I + 2A + A
For Practice
1. If 3A – B = [5 0] and B = [4 3] Then write the order of matrix A.
[1 1] [2 5]
Then find the value of matrix A. 6. Write the element a of a 3 × 3 matrix A = [a ij],
whose elements are given by aij = |i−j|/2
2. Find the value of x – y, if
2 [1 3] + [y 0] = [5 6] 7. If [2x 3] [1 2] [x] = 0, find x.
[0 x] [1 2] [1 8] [-3 0] [3]

3. If A is a square matrix such that A 2 = I, then find 8. Find the value of x – y, if
the simplified value of (A – I)3 + (A + I)3 – 7A. 2 [3 4] + [1 y] = [7 0]
[5 x] [0 1] [10 5]
4. Write the number of all possible matrices of order
2 × 2 with each entry 1, 2 or 3. 9. Solve the following matrix equation for x.
[x 1] [1 0] = 0
5. If [2 1 3] [-1 0 -1] [1] = A [-2 0]
[-1 1 0] [0]
[0 1 1] [1]
$8.09
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
tanyajain

Conoce al vendedor

Seller avatar
tanyajain delhi university
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
0
Miembro desde
2 año
Número de seguidores
0
Documentos
1
Última venta
-
knowit

i publish basically everything i find important. Currenty working on high school mathematics concepts. my documents contain every minute detail you need to know about that particular topic

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes