100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting ALLE STOF THEORETISCHE BIOLOGIE - KWANTITATIEVE BIOLOGIE (deeltoets 2) Universiteit Utrecht (UU)

Puntuación
-
Vendido
2
Páginas
16
Subido en
12-04-2023
Escrito en
2022/2023

Ik begreep eerst helemaal niets van Theoretische biologie, het ging me allemaal veel te snel en ik had nog niet eens door wat al die letters nou precies betekenen?! Toch heb ik voor deeltoets 2 een 9.1 gehaald!! Dit is een samenvatting (in begrijpelijk Nederlands) over wat er nou precies allemaal is behandeld in al die hoorcolleges in het 2e deel van de cursus kwantitatieve biologie. Dit is alles wat je moet weten om deeltoets 2 (of de herkansing) met een mooi cijfer af te ronden!

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
12 de abril de 2023
Archivo actualizado en
16 de agosto de 2023
Número de páginas
16
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

Theoretische Biologie


Deeltoets 2 van Kwanti tati eve Biologie
Jaar 1, periode 3
Bevat alle uitgewerkte leerdoelen




In ODE modellen (Ordinary Differential Equations) gaan ze ervan uit dat:
- Alle individuen gelijk zijn en beschreven kunnen worden door een enkele variabele.
- De populatie gemixt is, dus ruimtelijke locatie is irrelevant
- De populatie is groot, je hoeft je niet bezig te houden met 0.1 individuen
- De parameters zijn constant, geen seizoensgebonden veranderingen in b of d

b = per capita birth rate Het model dat hier bij hoort:
bN = aantal geboortes stijgt lineair met populatie
d = per capita death rate dN
=( b−d ) N
dN = aantal sterfgevallen stijgt lineair met populatie dt

kleine populatie heeft de neiging om te groeien, een grote heeft de neiging om af te nemen. Als er een evenwicht is
blijft het aantal individuen in de populatie gelijk omdat geboorte en sterfte elkaar in evenwicht houden, dit heet de
steady state.

Als je ‘density dependent death’ gaat toevoegen ziet je model er iets anders uit. Je vervangt de constante d dan
door: f ( N )=d +cN
Je kan dit ook schrijven als: g ( N )=1+ N /k met k =d /c
(k is een maat voor hoe erg je sterfte toeneemt met de populatiegrootte)


Het model dat bij ‘density dependent death’ hoort:

dN
=(b−d ( 1+ N /k )) N met g ( N )=1+ N /k
dt
d is hier je minimale per capita ‘sterfte’ en g hoe je ‘sterfte’ stijgt in relatie tot N
Je noemt het niet-triviale evenwicht ‘K’ ook wel de carrying capacity van het
ecosysteem. Deze kan opgelost worden uit de bovenstaande formule door
dN b−d
=0 in te vullen. Je krijgt dan K=k
dt d

,Een triviaal evenwicht (bijv. N=0) betekent dat een van de populaties is uitgestorven.
Een niet-triviaal evenwicht houdt in dat er co-existentie is.

R0 = b/d Dit is de fitness

Bij een 1-dimensionaal systeem teken je een faseplaatje door een horizontale lijn te tekenen. Vervolgens ga op de
lijn aannames over de afgeleide van de groei tekenen:

a. Als de grafiek > 0 is (boven de x-as), teken je een  om te laten zien dat N toeneemt.
b. Als de grafiek < 0 is (onder de x-as), teken je een  om te laten zien dat N afneemt.
c. Als de grafiek = 0 is, teken je een cirkel om een evenwicht (steady state) aan te duiden.

0 is wel een evenwicht, maar een instabiel evenwicht



Attractor Repellor

Als je meerdere attractoren hebt bepalen de begincondities naar welke attractor het evenwicht beweegt. De grens
tussen twee attractoren is altijd een instabiel evenwicht.
Het interval van de begincondities waarvoor een evenwicht naar een bepaalde attractor beweegt noem je de Basins
of attraction.




dN
Als je ‘density dependent birth’ toevoegt ziet je model ( =( b−d ) N ) er weer iets anders uit.
dt
we vervangen b nu met f ( N )=b−cN , met k =b /c
dit kan je ook weer schrijven als g( N )=1−N /k
(k is nu de populatiegrootte waarbij je geboortecijfer 0 is geworden)

Het model dat hier bij hoort:

dN
=(b ( 1−N /k )−d ) N met g ( N )=1−N /k
dt
b is hier je maximale per capita ‘geboorte’ en g hoe je ‘geboorte’ daalt in relatie tot N
Je noemt het niet-triviale evenwicht ‘K’ ook wel de carrying capacity van het ecosysteem.
dN
Deze kan opgelost worden uit de bovenstaande formule door =0 in te vullen.
dt
Je kan ook een model maken voor logistieke groei, dit doe je met een vergelijking van de vorm:


Logistieke groei:

dN
=rN (1−N / K ) met r =b−d
dt
r is ‘natural rate of increase’ en K is de carrying capacity

, De drie typen functies die we nu behandeld hebben zijn:

dN
Density dependent death: =(b ( 1−N /k )−d ) N Hebben allemaal de vorm:
dt
dN dN 2
Density dependent birth: =(b−d ( 1+ N /k )) N =aN −b N
dt dt

dN
Functie voor logistieke groei: =rN (1−N / K )
dt


Het is natuurlijk zeer onwaarschijnlijk dat ‘geboorte’ en ‘sterfte’ lineair afhangen van N.
Dat zou betekenen dat ‘geboorte’ negatief zou kunnen zijn en ‘sterfte’ oneindig. We gaan nu kijken naar
verzadigingsfuncties, ook wel Hill-functies

xn
Hill-functie: f ( x )=
x n +hn
n n
x h
Reverse Hill-functie: g ( x )=1− n n
= n n
x + h x +h

Nu gaan we kijken naar 2-dimensionale systemen!

Het klassieke predator-prooi model van de ecologie; Lotka-Volterra model



Lotka-Volterra model

dR dN
=( bf ( R ) −d−aN ) R en =( caR−δ ) N Met f ( R )=1−R /k
dt dt
dR dN
=( b (1−R /k)−d−aN ) R en =( caR−δ ) N
dt dt
(a is de killing rate van prooidieren door predatoren, c is hoeveel ‘roofdiermassa’ elk
opgegeten prooidier levert, δ is de sterfte van de roofdieren)


Als je een Lotka-Volterra evenwicht wilt vinden moeten beiden vergelijkingen gelijk zijn aan 0.

Stap 1. Vul 0 in voor de makkelijkste vergelijking en los deze op.
Als je het bovenstaande model gebruikt:

dN
=0 , als je dit oplost krijg je N=0 of R=δ /ca
dt
(dit betekent dus: er zijn 0 predatoren of δ /ca prooidieren)

Stap 2. Substitueer deze oplossingen een voor een in de 2e formule, terwijl je deze gelijkstelt aan 0.
dR
Eerst substitueer je N=0 in =0  ( b ( 1−R /k )−d ) R=0 .
dt
Hier komen weer 2 oplossingen uit: R=0 of (b ( 1−R /k )−d)=0
(dit betekent dus: er zijn 0 prooidieren -beide populaties uitgestorven- of prooidieren op carrying capacity,
geen predatoren, er staat namelijk R=k ( 1−d /b )=K )
$6.04
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
VetStudentUU

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
VetStudentUU Universiteit Utrecht
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
7
Miembro desde
2 año
Número de seguidores
5
Documentos
16
Última venta
1 año hace
VetStudentUU

Ik heb mijn eerste jaar van de bachelor Biologie aan de UU afgerond en heb hier heel veel plezier in gehad (2022-2023). De leerstof vond ik erg interessant en ik sloot het jaar dan ook af met een gemiddelde boven de 8. Dit jaar ga ik beginnen aan een nieuwe studie, diergeneeskunde! Hopelijk kan ik nog iemand helpen met mijn samenvattingen en aantekeningen :)) Bij vragen of opmerkingen kan je me altijd een berichtje sturen!

Lee mas Leer menos
0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes