100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Examen

COS2633 EXAM PACK 2023

Puntuación
-
Vendido
-
Páginas
408
Grado
A+
Subido en
14-03-2023
Escrito en
2022/2023

Recent exam questions and answers and summarized notes for exam preparation.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
14 de marzo de 2023
Número de páginas
408
Escrito en
2022/2023
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

COS2633
EXAM
PACK 2023
LATEST
QUESTIONS
AND ANSWERS
For queries or any assignment help
Email:

,COS2633
EXAM PACK




Revision PACK
Questions. Answers

, NUMERICAL METHODS I – COS 233-8


Interval bisection method


Strategy Find two values of x, that is, a and b, which bracket the root by checking whether f ( a ) × f (b) < 0. Then
successively divide the interval in half and replace one endpoint with the midpoint so that the root is
bracketed again.

Requirements The function f(x) must be continuous in the interval.
There should not be multiple roots in the interval.

Advantages The number of iterations to achieve a specified accuracy is known in advance.
It is the method that is recommended for finding a first approximation to the root.

Convergence Slow because the estimate of the root may be better at an earlier iteration than at later ones.

Order of convergence 1

(b − a )
Error formula e=
2n

Note This does not mean that each error is smaller than the previous one.



Secant method


Strategy Choose two values of x, that is, x 0 and x1 , which are close to the root. Draw a straight line through the
points (these points can either be on the same side or on opposites sides of the root). The intersection of
the line with the x-axis should be close to the root. Repeat the process by always using the last two
computed values.

Requirements The function f(x) must be continuous.
The function f(x) must not be far from linear in the vicinity of the root.

Convergence Intermediate because the error is proportional to the product of the previous two errors. It is therefor
faster than a linear method but slower than a quadratic method.

Order of convergence 1.62

f ( xn )
Iteration formula x n +1 = x n − ( x n − x n −1 )
f ( x n ) − f ( x n −1 )

g ′′( ξ1 , ξ2 )
Error formula en +1 = (e n )(en −1 )
2

1+ 5
Note The order of convergence is = 1.62 .
2

, False position (regula falsi) method


Strategy Choose two values of x, that is,x0 and x1 , which bracket the root. Draw a straight line through the
points. The intersection of the line with the x-axis should be close to the root. Repeat the process by
always checking that the root remains bracketed.

Requirement The function f(x) must be continuous in the interval.

Advantage Unlike the interval bisection method, the intersection of the line and the x-axis does not necessarily occur
at the midpoint of the interval.

Convergence Intermediate because, though it is faster than interval bisection, its algorithm is slightly complicated. If
convergence takes place from the end that is farther from the root, it slows down the process.

Order of convergence 1

f ( xn )
Iteration formula x n +1 = x n − ( x n − x n −1 )
f ( x n ) − f ( x n −1 )

Note In most cases, this method converges to the root from one end of the interval.



Newton’s method


Strategy This method is based on a linear approximation of the function but does so by using a tangent to th
curve. Find one starting value that is not too far from the root and move along the tangent to its
intersection with the x-axis so as to obtain the next approximation.

Requirement The function f(x) must be continuous in the interval.
The derivative of the function f(x) must exist.

Convergence This method is rapidly convergent in the neighbourhood of the root. The error of each step approaches a
constant k times the square of the error of the previous step. This means that the number of decimal places
of accuracy nearly doubles at each iteration. However, the method requires two function evaluations per
step.

Order of convergence 2

f ( xn )
Iteration formula x n +1 = x n −
f ′( x n )

Error formula en +1 ∝ e n2
$2.50
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
smillanih Chamberlian School of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
399
Miembro desde
2 año
Número de seguidores
327
Documentos
1239
Última venta
1 semana hace

3.7

43 reseñas

5
23
4
3
3
5
2
5
1
7

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes