100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

OCR A Level Math Exam Questions and Mark Scheme

Puntuación
-
Vendido
-
Páginas
35
Grado
A+
Subido en
27-02-2023
Escrito en
2022/2023

OCR A Level Math Exam Questions and Mark Scheme 1. i. The first three terms of an arithmetic progression are 2x, x + 4 and 2x − 7 respectively. Find the value of x. [3] ii. The first three terms of another sequence are also 2x, x + 4 and 2x − 7 respectively. a. Verify that when x = 8 the terms form a geometric progression and find the sum to infinity in this case. [4] b. Find the other possible value of x that also gives a geometric progression. [4] 2. Sarah is carrying out a series of experiments which involve using increasing amounts of a chemical. In the first experiment she uses 6 g of the chemical and in the second experiment she uses 7.8 g of the chemical. i. Given that the amounts of the chemical used form an arithmetic progression, find the total amount of chemical used in the first 30 experiments. [3] ii. Instead it is given that the amounts of the chemical used form a geometric progression. Sarah has a total of 1800 g of the chemical available. Show that N, the greatest number of experiments possible, satisfies the inequality 1.3N ⩽ 91, and use logarithms to calculate the value of N. [6] 3. a. The first term of a geometric progression is 50 and the common ratio is 0.8

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Nivel de Estudio
Editores
Tema
Curso

Información del documento

Subido en
27 de febrero de 2023
Número de páginas
35
Escrito en
2022/2023
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

OCR A Level Math Exam


Questions and Mark Scheme

,OCR A Level Math Exam
Questions and Mark Scheme


1. i. The first three terms of an arithmetic progression are 2x, x + 4 and 2x − 7 respectively. Find
the value of x.

[3]

ii. The first three terms of another sequence are also 2x, x + 4 and 2x − 7 respectively.
a. Verify that when x = 8 the terms form a geometric progression and find the sum to
infinity in this case.

[4]

b. Find the other possible value of x that also gives a geometric progression.

[4]



2. Sarah is carrying out a series of experiments which involve using increasing amounts of a
chemical. In the first experiment she uses 6 g of the chemical and in the second experiment she
uses 7.8 g of the chemical.

i. Given that the amounts of the chemical used form an arithmetic progression, find the total
amount of chemical used in the first 30 experiments.

[3]

ii. Instead it is given that the amounts of the chemical used form a geometric progression.
Sarah has a total of 1800 g of the chemical available. Show that N, the greatest number of
experiments possible, satisfies the inequality

1.3N ⩽ 91,



and use logarithms to calculate the value of N.

[6]

,3. a. The first term of a geometric progression is 50 and the common ratio is 0.8. Use logarithms
to find the smallest value of k such that the value of the kth term is less than 0.15.

[4]

b. In a different geometric progression, the second term is −3 and the sum to infinity is 4.
Show that there is only one possible value of the common ratio and hence find the first
term.

[8]




4. A geometric progression has first term 3 and second term − 6.

i. State the value of the common ratio.

[1]


ii. Find the value of the eleventh term.

[2]


iii. Find the sum of the first twenty terms.

[2]




5. An arithmetic progression u1, u2, u3, … is defined by u1 = 5 and un+1 = un + 1.5 for n ⩾ 1.

i. Given that uk = 140, find the value of k.

[3]


A geometric progression w1, w2, w3, … is defined by wn = 120 ×(0.9) n−1 for n ⩾ 1.

ii. Find the sum of the first 16 terms of this geometric progression, giving your answer
correct to 3 significant figures.

[2]




iii. Use an algebraic method to find the smallest value of N such that

[6]

, 6. Business A made a £5000 profit during its first year.

In each subsequent year, the profit increased by £1500 so that the profit was £6500 during
the second year, £8000 during the third year and so on.

Business B made a £5000 profit during its first year.
In each subsequent year, the profit was 90% of the previous year’s profit.

(a) Find an expression for the total profit made by business A during the first n years.
[2]
Give your answer in its simplest form.




(b) Find an expression for the total profit made by business B during the first n years.
[3]
Give your answer in its simplest form.




(c) Find how many years it will take for the total profit of business A to reach £385
000. [3]




(d) Comment on the profits made by each business in the long term. [2]



7. In this question you must show detailed reasoning.
It is given that the geometric series



is convergent.
(a) Find the set of possible values of x, giving your answer in set notation. [5]



(b) Given that the sum to infinity of the series is , find the value of x. [3]




8(i). The seventh term of a geometric progression is equal to twice the fifth term. The sum of
$17.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
keenstar Chamberlain College Of Nursing
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
824
Miembro desde
4 año
Número de seguidores
518
Documentos
2011
Última venta
2 semanas hace

4.8

561 reseñas

5
517
4
18
3
9
2
7
1
10

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes