100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

MAM2000W 2RA Notes (Real Analysis)

Puntuación
5.0
(1)
Vendido
1
Páginas
38
Subido en
24-01-2023
Escrito en
2022/2023

Provides an in-depth summary of the Abbott's take on real analysis and holds true value in studying for an exam.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
24 de enero de 2023
Número de páginas
38
Escrito en
2022/2023
Tipo
Notas de lectura
Profesor(es)
Dr. n.r.c. robertson
Contiene
Todas las clases

Temas

Vista previa del contenido

REAL ANALYSIS
PREP

, THE WELL-ORDERING PRINCIPLE
the well sanderling principle

AXIOM 2 [ THE WELL -
ORDERING PRINCIPLE ] :




Every non -



empty subset of 1N has a smallest element .




THEOREM 3 [ THE PRINCIPLE OF MATHEMATICAL INDUCTION ] :


For each K C- IN
,
let PCKI be a
logical proposition concerning
the number K ( Pllc) is true / false
depending
the value of K) If Pll ) is true and for each C- IN there of that
on . n
,
is some
way showing
Pln ) true that Plnti ) Therefore PCKI true for all
being implies is true .
is KEN .




THEOREM : 2 is not a rational number

Proof [ proof contradiction ]
: if 52 is rational by
↳ : .
52 =
Pig pig C- Z

↳ Assume 9 C- IN
q > 0 : .




↳ : 52 is rational → s= {q c- IN : Eq C- Z } ≠ ∅
↳ has smallest element [ Well
s a
Ordering ] go .




↳ : 1 ( 2 [ 4 i. I < T2 ( 2


↳ Oc S2 -
I Ll


↳ 9 , =
152-1190
i. 0C 91 (
go


↳ But
go C- S
,
so 5290 C- Z

i.
9 5290 C- Z
go
-

, =




↳ But 0cg , 91 be C- IN and
cqo i. must 91<90
↳ However : 5291 =
5215290 -90 ] 290-5290 = .
!
9, C- S



↳ Contradicts go is the smallest element of 5



NUMBER SYSTEMS

IN -


natural numbers { 1,2 , 3,4 ,
. . . }
Z -


the
integers { . . .

, -3 , -2 , -1
, 0,112,3 }

-


rational numbers { mln : MEZ in C- IN }
IR real numbers { }
-

-


x.ro




Algebraically ,
it is difficult to
distinguish R and 02 . Thus we need another axiom .




Natural numbers

↳ Every subset has a smallest element CW-0.PT
↳ Natural lm.nl
separated
"
numbers are
" :
Mtn =) ≥ I


They are bounded below : n so for all n C- IN


A subset ,
A ≤ IR is bounded below it there exists an M C- IR sit .
m≤ x for all ✗ C- A

i. We call m a lower bound for A.

lower bound

Any
"

than
"

number smaller M is also a .

,THE COMPLETENESS AXIOM OF IR
THE COMPLETENESS AXIOM Ii


Any non -



empty subset
of IR that is bounded below has a
greatest lower bound .




To be the lower bound for A must
greatest a set
, a number m
satisfy two conditions :
① m ≤ x for all sc C- A

② For each number n with men ,
there is an x EA with x Cn .




THE COMPLETENESS AXIOM 2 :


of that above has least
Any non -




empty subset IR is bounded a
upper bound .




A c- IR is bounded above it there exists a number m such that x ≤ m for all ✗ C- A .




We call M for
an
upper bound A.

It A is bounded above → -
A = § -

x KEA } is bounded below
, .




Greatest lower bound = infimum
least upper bound supremum
=




MAXIMUM AND SUPREMUM


Maximum [ definition] We b the maximum of the set A it
say
: :
is

① for C- A a ≤ b
every a
,




② b C- A

→ Max IA ) =
maximum of A



Supremum [ definition] We that b is the least bound of A it :

say
:

upper
① for C- A a ≤ b
every a ,

② whenever a ≤ c for every a C- A
,
then b ≤ C.

→ sup (A) supremum of A
=
.




* A set need not have a maximum . [ even it it is bounded above]
* A set which is bounded above
always has a
supremum .




* It Max (A) exists , Max / A) C- A , sap (A) does not need to be an element of A .




* It above : 1A )
Max / A) exists
,
A is bounded SUPIA ) = Max




MINIMUM t INFIMUM


Minimum [ definition] We b the of the set A it
say
: :
is minimum
① for C- A a ≥ b
every a
,




② b C- A

→ mail.AT =
maximum of A


b the of it
Infimum [ definition] we that is
greatest lower bound A :

say
:



① for C- A a ≥ b
every a ,

② whenever a
≥ c for every a C- A
,
then b ≥ c.

infimum (A)
'


→ = int


* A set need not have a minimum [ even it it is bounded below ]
A has
* set which is bounded below always a infimum
* It Min / A) exists , min (A) C- A int CA ) does not need to be an element of A
,
.




* It min / A) exists
,
A is bounded above : int (A) = min .LA )

, BOUNDED SUBSETS

A subset A of IR is
bounded it it is bounded both above and below .




A is bounded iff .
there is a number B such that :
1×1<13 for all x C- A

Example : 1- =
{ sin ≥ : KEIR } where B=I




CONSEQUENCES OF THE
COMPLETENESS AXIOM
THE EXISTENCE OF TE


let A = { x c- IR : x2 C2 }
↳ A- =/ ☒ since 0 C- A




__ 2
y
- - - - - -




y
-
- -




1

I

:
• •



A
42




Claim : The number 2 is bound for A
an
upper

Proof : ① Consider number 0C with >2
any
a


i. x2 > 2x 74 Thus x & A
,




② The Completeness Axiom tells us that A has a least
upper bound ,
S .




that 0 's ≤ 2 and
such
sup (A) 2
=

<




Claim ; s =
52



Proof first
:
① Suppose that SZCZ

② For h 20 , Csth / 2 =
S2 tzsh th
?

any
③ It 0 < hcl ,
then hzch ,
so Csthl ? L S2 1- 4h th [ 5=2 ]

i. Csth )2 ( S2 1- 5h



④ By choosing h
sufficiently small
, we can make s2 1- 5h 22

But then 5th C- A :S isn't an
upper bound for A
$10.02
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
theolinnaidoo1
3.0
(2)

Documento también disponible en un lote

Reseñas de compradores verificados

Se muestran los comentarios
1 año hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
theolinnaidoo1 University of Cape Town
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
7
Miembro desde
2 año
Número de seguidores
4
Documentos
9
Última venta
8 meses hace

3.0

2 reseñas

5
1
4
0
3
0
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes