100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary D0H45A_Linear Optimisation: Part 2: Models

Puntuación
-
Vendido
-
Páginas
10
Subido en
16-01-2023
Escrito en
2020/2021

Uitbreiding van grafiek en simplex method om LP problemen op te lossen

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
Desconocido
Subido en
16 de enero de 2023
Número de páginas
10
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

Part 2: Methods

Graphical solution of LP problems with two variables

General form

Max cx
s.t. Ax ≤ b
x≥0

To graphically determine the
solution of an LP problem we will
represent the information we have
in a graph by drawing the lines of
all the constraints and determine
on basis if that the feasible region.

In order to find the optimal
solution of the feasible set we will
draw the objective function and
make it move in the direction c.

C is the improving direction and is the vector made with the coefficients of the objective
function.


Isoprofit line: line on which all points have the same z-value (𝑧 = 𝑎𝑥$ + 𝑏𝑥?) for
maximization problems
Isocost line: line on which all points have the same z-value (𝑧 = 𝑎𝑥$ + 𝑏𝑥? ) for minimization
problems

As we move the isoprofit lines in the direction of c, the total profit will increase. To solve an
LP problem in 2 variables, we should try tp push isoprofit (or isocost) lines in the improving
direction as much as possible while still staying in the feasible region.

!! for a maximization problem we use c as improving direction. For minimization problems
we will have to use ( -c) because otherwise we are improving.

The feasible region is defined by the constraints so if we modify the objective function while
keeping the constraints the same, this one won’t change.
What will change in this case is the improving direction => is defined by the objective
function.


Convex set

Set S is convex if the line joining any pair of points in S is completely contained in S.

, Convex if for two points 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑆, their convex combination 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝑆 for
all 𝜆 ∈ [0,1].

ð Feasible set of an LP must be a convex set

Strict convex combination

X is a strict convex combination of 𝑥$ and 𝑥? if 𝑥 = 𝜆𝑥$ + (1 − 𝜆)𝑥? for some 𝜆 ∈ ]0,1[.

Extreme point (corner point)

P is an extreme point of it cannot be represented as a strict convex combination of distinct
points of S. If to represent the point as a convex combination of 2 other points then if one
point is in the set then the other one will necessarily have to be outside of the set S.



In the case that the isoprofit or isocost line on a constraint line arrives when optimization its
direction, we will have as optimal solution every feasible solution on the segment of the
constraint line that belongs to the feasible region.
ð LP has multiple or alternate optimal solutions


Unbounded LP Problems:

Arises when we the objective function can be moved infinitely while keeping optimizing the
problem and staying in the feasible region.
For such a LP problem there is no optimal solution because we can always find beter and
the optimal value is defined to be +∞ (−∞)


Infeasible LP Problems:

Happens when we can’t find a feasible solution.


Fundamental Theorem of Linear Programming

“If the feasible set is not empty, if there is a feasible solution, then there is at least an
extreme point.”

“If an LP with feasible set has an optimal solution, then there is an extreme point of the
feasible region that is an optimal solution to the LP.”

ð ! not every optimal solution needs to be an extreme point!
$5.43
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
chlodewandeleer Katholieke Universiteit Leuven
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
17
Miembro desde
4 año
Número de seguidores
14
Documentos
9
Última venta
9 meses hace
Summary Ultra

Vind je snelkoppeling naar succes - krijg nu samenvattingen!

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes