100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Calculus 2

Puntuación
-
Vendido
4
Páginas
16
Subido en
10-04-2016
Escrito en
2015/2016

This summary was made with content from the book "Calculus. Early transcendentals" by James Stewart and also from lecture notes.

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
10 de abril de 2016
Número de páginas
16
Escrito en
2015/2016
Tipo
Resumen

Temas

Vista previa del contenido

Calculus 2


February 2016


Chapter 12
A vector has a direction and length. We call position vector a vector that goes from the origin to a
~ is
point. If there are the points A(x1 , y1 , z1 ) and B(x2 , y2 , z2 ), the vector a with representation AB

a = hx2 − x1 , y2 − y1 , z2 − z1 i
p
The legth of a vector is determined doing: |a| = a21 + a22 . Standard basis vectors:

i = h1, 0, 0i j =h0, 1, 0i k = h0, 0, 1i


a =a1 i + a2 j + a3 k
a
The unit vector of a vector a 6= 0: u = |a|

The Dot Product
a·b
a · b = a1 b1 + a2 b2 + a3 b3 → a · b = |a||b| cos theta → cos θ =
|a||b|

Two vectors are orthogonal if and only if a·b = 0. If a and b point in the same direction a·b = |a||b|
and if a and b point in opposite directions a · b = −|a||b|.

Direction Angles and Direction Cosines
The direction angles of a nonzero vector a are the angles α, β, and γ that a makes with the positive
x-, y-, and z-axes. The direction cosines of the vector a are:
a1 a2 a3
cosα = cosβ = cosγ = → cos2 α + cos2 β + cos2 γ = 1
|a| |a| |a|

Projections
a
Scalar projection of b onto a: compa b = |a| b
a·b
Vector projection of b onto a: proja b = |a|2
a
The Cross Product

i j k
c = a × b ≡ a1 a2 a3 c is orthogonal to both a and b. |a × b| = |a||b| sin θ
b1 b2 b3

1

, If the cross product is equal to 0, then the two vectors are parallel to each other. For the standard
basis vectors i, j, and k we obtain:
i×j =k j×k =i k×i=j
j × i = −k k × j = −i i × k = −j
Some properties of the cross product:
a · (b × c) = (a × b) · c
a × (b × c) = b(ac) − c(ab) → Bac Cab Rule!

Triple Product

a1 a2 a3
a·(b×c) = b1 b2 b3 → It0 s the volume of the parallelepiped determined by the vectors a, b and c.
c1 c2 c3

Equations of lines and planes
A line L in three-dimensional space is determined when we know a point P on L and the direction
of L. The vector equation of L is:
r = r0 + tv (tv = a)
The parametric equations of the line L through the point P0 (x0 , y0 , z0 ) and parallel to the vector
v = ha, b, ci are:
x = x0 + at y = y0 + bt z = z0 + ct
The symmetric equations of L are:
x − x0 y − y0 z − z0
= =
a b c
The line segment from r0 to r1 is given by the vector equation:
r(t) = (1 − t)r0 + tr1 0≤t≤1


Planes
Space determined by a point P0 (x0 , y0 , z0 ) and a normal vector that is orthogonal to the plane.
Two planes are parallel if their normal vectors are parallel (they will be the same normal vector).
The angle between 2 planes is defined as the acute angle between their normal vectors.
a(x − x0 ) + b(y − y0 ) + c(z − z0 ) = 0 → ax + by + cz + d = 0


Cylinder and quadratic surfaces
In order to sketch the graph of a surface, it is useful to determine the curves of intersection of
the surface with planes parallel to the coordinate planes. These curves are called traces (or cross-
sections) of the surface.
A cylinder is a surface that consists of all lines (called rulings) that are parallel to a given line and
pass through a given plane curve. If one of the variables x,y,z is missing, then it’s a cylinder.
A quadratic surface is a second-degree equation in the three variables x, y, and z.

Ax2 + By 2 + Cz 2 + J = 0 Ax2 + By 2 + Iz = 0


Page 2
$3.74
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Ariadnaaz Rijksuniversiteit Groningen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
17
Miembro desde
11 año
Número de seguidores
12
Documentos
17
Última venta
2 año hace

5.0

2 reseñas

5
2
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes