100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Polynomials (Algebra) - Detailed Notes - Grade 12 Mathematics

Puntuación
-
Vendido
-
Páginas
15
Subido en
09-01-2023
Escrito en
2022/2023

This document contains detailed in-depth notes about polynomials (algebra) for grade 12 mathematics. The following topics are dealt with: 1.1 Important Definitions and Notes for Polynomials 1.2 Factoring Method 1: Sum and Difference of Two Cubes 1.3 Factoring Method 2: Grouping 1.4 Division of Polynomials Definition 1.5 Factoring Method 3: Long Division 1.6 The Remainder Theorem 1.7 The Factor Theorem 1.8 Factoring Method 4: Using the Factor Theorem Alongside each of the topics listed above, there are numerous worked examples that are covered step by step.

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Grado
Schooljaar
200

Información del documento

Subido en
9 de enero de 2023
Número de páginas
15
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

1


Mathematics – Grade 12 Notes
Algebra - Polynomials


Content:
Polynomials:
1.1 Important Definitions and Notes for Polynomials
1.2 Factoring Method 1: Sum and Difference of Two Cubes
1.3 Factoring Method 2: Grouping
1.4 Division of Polynomials Definition
1.5 Factoring Method 3: Long Division
1.6 The Remainder Theorem
1.7 The Factor Theorem
1.8 Factoring Method 4: Using the Factor Theorem


1.1 Important Definitions and Notes for Polynomials
Polynomial – It is a function where each term within the function consists of some constant
multiplied by a variable raised to some exponent (a power). Furthermore, the exponent of each
variable must be a whole number (i.e. 0; 1; 2…∞)! The coefficients can be any real number.
All exponents are whole numbers.
(The exponent of the variable for ½ is
1 0). Therefore this is a polynomial.
e.g. 2𝑥 5 + 9𝑥 1 −
2

Raised to the power of 1/2 (square root
Raised to the power of -1,
1
is the same as raising to the power of ½),
therefore, NOT a 5
polynomial. e.g. 2𝑥 −1 + 4𝑥 3 − 10√𝑥 × 𝑥 8 therefore, NOT a polynomial.


Raised to the power of Raised to the power of -8, therefore,
1/3, therefore, NOT a NOT a polynomial.
polynomial.


If any of the exponents are not a whole number (as in the above example) then the function is
NOT a polynomial. This applies even if only one variable is raised to a non-whole number.


Degree – Is the highest power of a variable found within the polynomial.
1
e.g. 9𝑥 2 + 12𝑥 7 − 19 ÷ 4 𝑥 The degree of this polynomial is 7.




Linear Polynomial – A polynomial that has a degree of 1.
e.g. 8𝑥 + 1




Pia Eklund 2023

, 2


Quadratic Polynomial – A polynomial that has a degree of 2.
1
e.g. 24𝑥 2 − 3 𝑥 + 7



Cubic Polynomial – A polynomial that has a degree of 3.

e.g. 6𝑥 3 − 2𝑥


Zeros of a Polynomial – The values that when substituted in the place of x results in the entire
polynomial being equal to 0.
e.g. 4𝑥 2 − 4 = 0 when 𝑥 = 1 or 𝑥 = −1
4(1)2 − 4 = 4 − 4 = 0

4(−1)2 − 4 = 4 − 4 = 0



Example 1 – Foundations
Consider the polynomial ℎ(𝑥) = (3𝑥 − 1)(2𝑥 2 − 9𝑥 − 5). Determine the following:
a) Degree of polynomial.
b) Coefficient of 𝑥 2 .
c) The constant term.
d) The zeros of the polynomial.


a) Be very careful, 𝑥 2 is NOT the highest power!
In order to determine the highest power we need to expand the expression.

ℎ(𝑥) = (3𝑥 − 1)(2𝑥 2 − 9𝑥 − 5) Expand the expression by
= 6𝑥 3 − 27𝑥 2 − 15𝑥 − 2𝑥 2 + 9𝑥 + 5 multiplying the terms together
= 6𝑥 3 − 29𝑥 2 − 6𝑥 + 5 and then simplify.

∴ The highest power is 3 and thus the degree of the polynomial is 3.

b) Once again, be careful, use the expanded version of the expression to find the coefficient.

ℎ(𝑥) = 6𝑥 3 − 29𝑥 2 − 6𝑥 + 5

The coefficient of 𝑥 2 is −29.

c) Once again, be careful, use the expanded version of the expression to find the constant (i.e.
the term that does not change when 𝑥 is replaced by a value).

ℎ(𝑥) = 6𝑥 3 − 29𝑥 2 − 6𝑥 + 5

The constant is 5.

d) In this case, using the un-expanded version of the polynomial will be easier to factorise and
hence find the zeros in comparison with the expanded version. 2 1
To find the zeros, we equate the polynomial to 0 and solve for x:
1 5
0 = (3𝑥 − 1)(2𝑥 2 − 9𝑥 − 5) Used cross-factor method.
You can use any method you
know to factor.
2 × 5 = 10
1×1 =1
Pia Eklund 2023
−10 + 1 = −9
$3.07
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
piaeklund

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
piaeklund University of the Witwatersrand
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
2
Miembro desde
3 año
Número de seguidores
2
Documentos
8
Última venta
2 año hace

0.0

0 reseñas

5
0
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes