100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

Stat 431 Assignment 3 solutions|very helpful

Puntuación
-
Vendido
-
Páginas
12
Grado
A+
Subido en
07-12-2022
Escrito en
2022/2023

Stat 431 Assignment 3 solutions 1. [ 12 marks] (a) We start by fitting the interaction model logit(πi) = β0 + β1xi1 + β2xi2 + β3xi1xi2 The Wald-test for H0 : β3 (coefficient of interaction term) gives a p−value << 0.05, hence we can not drop the interaction term. Since we can not further simplify this model, it is the best logit model we can fit. [2] cells<-("", header=T) cells$resp<-cbind(cells$Cell, 200-cells$Cell) fit1<-glm(resp~tnf+ifn+tnf*ifn, family=binomial, data=cells) > summary(fit1) Call: glm(formula = resp ~ tnf + ifn + tnf * ifn, family = binomial, data = cells) Deviance Residuals: Min 1Q Median 3Q Max -5.2331 -3.4359 -0.7136 2.8511 4.8272 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -1.730e+00 7.055e-02 -24.524 < 2e-16 *** tnf 2.521e-02 1.353e-03 18.625 < 2e-16 *** ifn 1.068e-02 1.213e-03 8.798 < 2e-16 *** tnf:ifn 3.839e-04 8.499e-05 4.517 6.26e-06 *** --- Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 1309.96 on 15 degrees of freedom Residual deviance: 192.36 on 12 degrees of freedom AIC: 281.84 However, the deviance test indicate that this model is not adequate (compared to the saturated model). Interpretation [4] • exp(βb0) = 0.: odds of response when both TNF dose xi1 = 0 and IFN dose xi2 = 0. This odds is < 1, which means the probability of cell differentiation is very low (compared to no cell differentiation). • β2 is the change in the log odds of cell differentiation associated with 1 unit of increase in IFN, when TNF dose xi1 = 0. As βb2 = 1.068, the log odds (or the probability) of cell differentiation increase as IFN dose increases, when TNF dose is zero. • When the dose of TNF (xi1) increase by 1 unit, the log odds of response change by β1 + β3xi2, which is a linear function of IFN dose (xi2). – βb1 = 2.521 is the amount of increase in log odds due to 1 unit of increase in TNF, when IFN dose xi2 =

Mostrar más Leer menos
Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
7 de diciembre de 2022
Número de páginas
12
Escrito en
2022/2023
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

Stat 431 Assignment 3 solutions


1. [ 12 marks]

(a) We start by fitting the interaction model




!
st
logit(πi ) = β0 + β1 xi1 + β2 xi2 + β3 xi1 xi2




po
The Wald-test for H0 : β3 (coefficient of interaction term) gives a p − value << 0.05,
hence we can not drop the interaction term. Since we can not further simplify this
model, it is the best logit model we can fit. [2]




t
no
cells<-read.table("cells.txt", header=T)
cells$resp<-cbind(cells$Cell, 200-cells$Cell)

fit1<-glm(resp~tnf+ifn+tnf*ifn, family=binomial, data=cells)




o
> summary(fit1)




D
Call:
glm(formula = resp ~ tnf + ifn + tnf * ifn, family = binomial,




-
data = cells)




ht
Deviance Residuals:
Min 1Q Median 3Q Max
-5.2331 -3.4359 -0.7136 2.8511 4.8272
ig
yr
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.730e+00 7.055e-02 -24.524 < 2e-16 ***
op

tnf 2.521e-02 1.353e-03 18.625 < 2e-16 ***
ifn 1.068e-02 1.213e-03 8.798 < 2e-16 ***
tnf:ifn 3.839e-04 8.499e-05 4.517 6.26e-06 ***
C



---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
e




(Dispersion parameter for binomial family taken to be 1)
th




Null deviance: 1309.96 on 15 degrees of freedom
Residual deviance: 192.36 on 12 degrees of freedom
ns




AIC: 281.84
ow




However, the deviance test indicate that this model is not adequate (compared to
the saturated model).
r




Interpretation [4]
to




• exp(βb0 ) = 0.1772844: odds of response when both TNF dose xi1 = 0 and IFN
c




dose xi2 = 0. This odds is < 1, which means the probability of cell differentiation
ru




is very low (compared to no cell differentiation).
• β2 is the change in the log odds of cell differentiation associated with 1 unit
st




of increase in IFN, when TNF dose xi1 = 0. As βb2 = 1.068, the log odds (or
In




the probability) of cell differentiation increase as IFN dose increases, when TNF
dose is zero.
• When the dose of TNF (xi1 ) increase by 1 unit, the log odds of response change
by β1 + β3 xi2 , which is a linear function of IFN dose (xi2 ).
– βb1 = 2.521 is the amount of increase in log odds due to 1 unit of increase in
TNF, when IFN dose xi2 = 0.

1

, – We see that βb3 = 3.839 (the slope of the change in log odds), it means
that the higher the dose of IFN, the bigger the increase in log odds of cell
differentiation due to the increase of TNF dose.
In summary, the significant positive effect of interaction term β3 implies
that, the higher the TNF dose, the stronger the impact of IFN dose on the
probability of cell differentiation, and vice versa.




!
st
• Similarly when the dose of IFN dose (xi2 ) increase by 1 unit, the log odds of




po
response change by β2 + β3 xi1 , which is a linear function of TNF dose (xi1 ).
– βb2 = 1.068 is the amount of increase in log odds due to 1 unit of increase in




t
IFN, when TNF dose xi1 = 0.




no
(b) Deviance residuals plots demonstrate the poor fit of the selected logistic model in
(a), which agrees with the Deviance test result. [2]




o
D
-
ht
5




5




5
DEVIANCE RESIDUALS




DEVIANCE RESIDUALS




DEVIANCE RESIDUALS
ig
0




0




0
yr
op
-5




-5




-5
C



0 20 40 60 80 100 0 20 40 60 80 100 0.2 0.4 0.6 0.8 1.0

TNF dose IFN dose FITTED VALUE
e
th




rd <- residuals.glm(fit1,"deviance")
fv <- fit1$fitted.values
ns




par(mfrow=c(1, 3))
plot(cells$tnf, rd,ylim=c(-8,8), xlab="TNF dose",ylab="DEVIANCE RESIDUALS")
abline(h=-2); abline(h= 2)
ow




plot(cells$ifn, rd,ylim=c(-8,8), xlab="IFN dose",ylab="DEVIANCE RESIDUALS")
abline(h=-2); abline(h= 2)
plot(fv, rd,ylim=c(-8,8), xlab="FITTED VALUE",ylab="DEVIANCE RESIDUALS")
abline(h=-2); abline(h= 2)
r
to




(c) The best fitted cloglog model is the main effects model [2]
c




log(− log(1 − πi )) = β0 + β1 xi1 + β2 xi2
ru




However, changing to cloglog link seems do not improve the fit at all, and the residual
st




plots are equally bad as the logit model. [2]
In




2
$8.49
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
Abbyy01 Exam Questions
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
91
Miembro desde
3 año
Número de seguidores
33
Documentos
1121
Última venta
3 semanas hace

3.5

13 reseñas

5
5
4
2
3
3
2
1
1
2

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes