100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Scientific and Statistical Reasoning Summary Block 3

Puntuación
-
Vendido
-
Páginas
23
Subido en
02-12-2022
Escrito en
2022/2023

This document provides the necessary content to properly understand the content for the third block of SSR. The lectures are summarized perfectly: the necessary information is included and illustrations to better understand the concepts are provided.

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
2 de diciembre de 2022
Número de páginas
23
Escrito en
2022/2023
Tipo
Notas de lectura
Profesor(es)
Roeland
Contiene
Lectures 20-28

Temas

Vista previa del contenido

Critical thinking about causality
Causal relationship- one thing happening makes the other thing MORE PROBABLE to
happen (statistical relationship)


Correlation does not imply causation
We don’t see causal relationship→ we infer since A happens after B
Causality (John Stuart Mill): X causes Y only if
- Priority: change in X precedes change Y
- Longitudinal study needed
- Consistency: change X varies systematically with change Y
- Covariance is needed
- Exclusivity: there is no alternative explanation for the
relationship
- Manipulation (groups) is needed


*Conclusion is not possible since exclusivity cannot be met (a
third variable can explain the relationship between the variables)


*Priority principle is also not met: self-esteem is considered an
effect not a cause


Reasoning errors
1. Post hoc ergo propter hoc (Y happens after X… then X is the cause)
a. X precedes Y (priority)--> focus on one aspect of Mill’s
criteria and ignore the other two (check for consistency and
exclusivity)
b. X covaries with Y (consistency/correlation)--> ignore priority
and exclusivity
c. X is the only possible cause of Y (exclusivity)--> ignore
priority and consistency



*Insufficient: needs other elements
*Non-redundant: crucial, presence
makes difference
*Unnecessary: there are other ways to
start fire (replaceable)
*Sufficient: factors (set of things)
together are sufficient

,How to check for non-redundancy: have two versions of the world (identical) only
difference is one factor → now you have an ideal counterfactual (perfect counterfactual
does not exist 🙂)
- Create experimental and control group (people are identical except for
randomness/random assignment) ⇒ that is experimental design:
- Useful because of manipulation of variables, random assignment,
counterfactual, control group


Threats to causality:
1. History: influences outside of intervention which influence outcome
2. Maturation: natural changes that may be confused with effect treatment
3. Selection: selection criteria for treatment related to outcomes of treatment/
systematic differences over conditions that could also cause observed effect
4. Attrition: participant's failure, systematically correlated with conditions (dropping
out of participants… condition gets affected)
5. Instrumentation: change in measuring instrument resulting in a difference between
pre-and post-measurement
6. Testing: effect of measurement on measurement (fatigue, habituation, etc.) exposure
to a test can affect scores on subsequent exposures
7. Regression to the mean: extreme scores will be followed by less extreme scores


DAG⇒ makes it easier to: be more specific about what we are
assuming about the causal relationships, identify potential
confounds when estimating the true causal effect of one variable
on another, understand some applied issues ⇒ justified to
conclude that a correlation is causal


Mediation: effect of X and Y is indirect, mediated by Z
Coufounder: common cause→ X and Y correlate because they
share a common cause… distorted association when no control Z
Collider: common effect… distorted association when control Z


*Whether you should adjust for third variable (Z) depends on the situation you are in→
make assumptions explicit→ use causal graphs to help you and the reader out
- Don’t control for collider or mediator but control for confounder (controlling: going
into detail and separating the variable)


Foster (2010)- swamp of ambiguity has arisen around statements about causality
1. Ignoring causality- some authors write down only correlations, without making any
statements about causality.

, 2. Statements of causality are recognized, but unclear assumptions- statements
about causal relationships based on correlational data, but often without specifying
assumptions.
3. Pseudo-correlational statements- no direct statements about causality, but clearly
implied in the conclusion.
● If all confounders are controlled for, a correlation between treatment and outcome
can be seen as causal
○ Does not mean that the more variables are controlled for, the more accurate
the estimation of the causal effect ⇒ purification principle
■ Problem of overcorrection: controlling for mediators on the causal
path could lead to an over\underestimation of the causal effect
■ Collider bias: controlling for common effects will bias the estimation
of a causal relationship between two variables



❖ Indirect effect→ X cannot directly cause Y
❖ For total effect of X Y, don’t control for mediator
❖ For direct effect of X Y, control for mediator
❖ Check effect of X to Z to then check for Z to Y
Mediator is caused by the treatment variable X and is a cause of
the outcome variables




Collider (common effect):
❖ X and Y cause Z⇒ common effect
❖ Do not control for third variable
➢ Otherwise collider bias
■ Correlation (negative) that does not exist
■ X No sprinkler and no rain = wet lawn X



Tinder example: thinking a beautiful personality and a beautiful face are mutually exclusive
➔ Negative correlation between beauty and personality ⇒ because conditioning on
collider ⇒ COLLIDER BIAS
➔ Attractiveness/personality are selected to go out with them on Tinder date
◆ To the degree to one is absent, the other is likely to be more present


Correlation & Simple regression
Simple regression only has one predictor
$6.82
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
isabelamendoza University of Amsterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
82
Miembro desde
3 año
Número de seguidores
59
Documentos
20
Última venta
2 meses hace

4.3

4 reseñas

5
1
4
3
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes