100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4,6 TrustPilot
logo-home
Resumen

Samenvatting Quantitative Methods (MAN-BCU2030EN) GRADE: 9.5

Puntuación
4.0
(1)
Vendido
8
Páginas
46
Subido en
07-11-2022
Escrito en
2022/2023

Onderwerpen die in de samenvatting worden behandeld (Engels) zijn: linear regression (lineare regressies), discrete choice modelling (logistic regression), tijdsanalyse (temporal analysis/time series analysis) geostatistiek (geostatistics, spatial analysis), structural equation modelling (SEM), factor analysis. De samenvatting bevat naast een uitleg per thema ook een overzichtelijke tabel met de belangrijkste formules, interpretaties, model-fit waarden (Relevantie en significantie) en model assumptions per thema. M.b.v. deze samenvatting is de course behaald met een 9.5. Bronnen die gebruikt zijn om de samenvatting te schrijven zijn de lectures en literatuur, waaronder: 1. Field (2018), Discovering Statistics Using IBM SPSS Statistics. Sage International Publishing. ISBN 9521. 2. Foster, Barkus, Yavorsky (2006). Understanding and using advanced statistics. Sage International Publishing. ISBN 0140. 3. Bowerman, O'Connell, Murphree (2011) 'Business Statistics in Practice' Sixth edition. McGraw Hill 2011 ISBN 978 0 07 1, chapter 16 (Time series forecasting) Collection of texts for Geostatistics

Mostrar más Leer menos
Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
7 de noviembre de 2022
Número de páginas
46
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

Summary Quantitative Methods (MAN-BCU2030EN)
Themes and chapters discussed in this summary are: Linear Regression, Discrete choice models,
Structural Equation Modelling (SEM), Spatial Analysis & Time Series Analysis.

Course completed with a 9.5


Theme 1: Linear Regression
Terms:
- Residual – error – ‘’e’’ in statistics

Types of variables
- Respondent variable (dependent) / explanatory variable (independent)
- Manifest (data) / latent (unknown/ indirectly measured)

Linear regression model (LRM) formula




- b0 = intercept /
constant / not important
- b1 = slope / coefficient / determines whether Y and X have an effect on each other
- Xi1 = independent variable and Yi = dependent variable

Least squares method (OLS)

- about: residuals/ deviances; to model a regression line in which:
- Draw a line in which: Minimize ∑ ei2 (sum of squared errors / residuals minimized – in which the
difference between the observed and predicted is the least)

,- formula for residuals:



Relevance of the model: R-Squared
- relevance of model as a whole: how much of the
variables in the model explain the whole model. If the
variables explain very little of e.g. the independent or
dependent variable, the model is not relevant. Because
they don’t have much effect on each other (x on y)
- After drawing the line: r-sqaure measures how well the
model fits the observations, the share of the variation of Y
that is explained by the model, the X’s you put in there.
(goodness-of-fit / modelfit)


Formula:




Outliers & multicollinearity

- observations beyond 3 sd of the mean (variance of 3 from the mean) are outliers and can be
removed  to be seen in a graph with sd’s
-multicollinearity is a problem, because the correlation between 2 explanatory (independent)
variables is too high. Then you can’t interpret the relevance of the individual explanatory variables
anymore.
- rule of thumb for detection: VIF >10 (or tolerance < 0.1)  serious problem multicllinearity. VIF
substantially higher than 1 (or tolerance < 0.2)  may be a problem.

,Dummy variables

- to include qualitative variables in your regression




When to use dummies?




Formula dummies (when > 2 categories) = number of dummies = number of categories minus 1 (this
is the reference)

Non-linearity

- when a line is not linear. To make it linear:

1) add regression model quadratic. Same formula of regression but with 2




2) transform with a mathematical function, mostly done with logistic regression. You can do this with
mathematical transformation: ln  natural logarithm.

, Theme 2: Discrete choice models
Non-metric variables

Discrete choice models, definition & types
- Regression models that predict the chance that a person, organisation etc. choses a discrete
alternative (yes/no, dead/alive, go/don’t go) based on his/her/its characteristics (age/ height /
grades)
- the alternatives (dependent) have to meet 3 criteria:

1. The set of alternatives have to be exhaustive (the choice must fall on one of the alternatives)
2. The alternatives have to be exclusive (it is not possible to chose more than one alternative)
3. The set of alternatives may not be too large

Types:
- logistic regression / binary choice models (2 alternatives: yes/no  binary variables (2))
- multinomial logit regression (or or more alternatives; bus/car/bike/metro)

Binary choice models (logistic regression)
- calculates the chances (because non-metric variable) that Y = 1 (mostly this is the: yes/pass/ effect
SPSS says which one is which)

- think of example: pass/don’t (alternative) pass exam on basis of your grade for OIM-B last year
(characteristic)

Binary choice model: calculating the odds in 4 steps
1. Model with predicted chance (p): chance is 1 op 6  1/6 = the predicted chance (what is the
chance that students pass QM given their grades in OIM-B?  problem = predicted chances are
sometimes above or below 1 and 0  needs to be either 1 or 0 (one of the alternatives) solution to
fix the range is a new algebra model: 2 tricks: odds and log odds

2. Model with odds: chance that something will happen in relation to that it will not happen: p / 1 – p
 this algebra model is not enough, because the predicted values go < 0 + the line is not linear, so it
does not meet conditions of linear regression (think of assumption met residuals even). So therefore;
last algebra tricks (making use of the odds, but a new model: log odds (logits):

Formula: (je doet 1-p want 1-1 is 0 (kans dat het gebeurd -1 want dat is de kans dat het niet gebeurd
want dat wordt aangegeven met een 0)
$12.28
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
HilalsahinRU
4.0
(1)

Reseñas de compradores verificados

Se muestran los comentarios
2 año hace

4.0

1 reseñas

5
0
4
1
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
HilalsahinRU Radboud Universiteit Nijmegen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
8
Miembro desde
3 año
Número de seguidores
4
Documentos
3
Última venta
3 meses hace

4.0

1 reseñas

5
0
4
1
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes