100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Statistics 1B

Puntuación
-
Vendido
-
Páginas
4
Subido en
01-02-2016
Escrito en
2014/2015

summary of the book introduction to the practice of statistics

Institución
Grado









Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
1 de febrero de 2016
Número de páginas
4
Escrito en
2014/2015
Tipo
Resumen

Temas

Vista previa del contenido

Statistic 1b 6.4

6.4 Power and Inference as a Decision

 The reject-or-not view is very important for planning studies
and for understanding statistical decision theory
Power
 Fixed level ∝ significance test are closely related to
confidence intervals – in fact, two-sided test can be carried
out directly from a confidence interval
 The significance level, like the CI, says how reliable the
method is in repeated use
 Power – the probability that a fixed level ∝ significance test
will reject the NH when a particular alternative value of the
parameter is true
 Calculation of power p.386
o 1) State the NH and AH, the particular alternative we
want to detect, and the significance level ∝
o 2) Find the values of x́ that will lead you to reject the
NH
o 3) Calculate the probability of observing these values of
x́ when the alternative is true
Increasing the power
 increase ∝
 consider a particular alternative that is farther away from μ0
; values of μ that are far away from μ0 are easier to detect
 increase the sample size; more data provides more
information about μ
 decrease σ ; has the same effect as increasing the sample
size
 power calculations are important in planning studies
o a significance test low power will unlikely show a
significant effect
o failure to reject the NH when using tests of low power is
not evidence that the NH is true
Inference as decision
 the AH enter the test only to help us see what outcomes count
against the NH
 acceptance sampling –
Two Types of error
 the NH has no longer the sample status (the statement we try
to find evidence against) that it had in test of significance
 Type I error - if we reject the NH (accept AH) when in fact the
NH is true
 Type II error – if we accept the NH (reject AH) when in fact the
AH is true
 P.390 Figure 6.17 & 6.18

, Error probabilities
 Statistical inference is based on probability
 We can never be for sure, BUT by random sampling and the
laws of probability, we can say what the probabilities of both
kinds of errors are
 Significance test with a fixed level of alpha give a rule for
decision making
 We can describe the performance of a test by the probabilities
of Type I and Type II errors
 The probability of a Type I error is the probability of rejecting
the NH when it is really true
 Significance and Type I error – the significance level ∝ of
any fixed level test is the probability of a Type I error
o ∝ is the probability that the test will reject the null
hypothesis when the NH is true
 the probability of a Type II error is the probability that the test
will fail to reject the NH when μ has this alternative value
 power and Type II error – the power of a fixed level test to
detect a particular alternative is 1 minus the probability of a
Type II error for that alternative
 the difference b/w two hypotheses lies in the reasoning that
motivates the calculations
 the two types of error and their probabilities give another
interpretation of the significance test and power of a test
 calculations of power are done to test the sensitivity of the
test
The common practice of testing hypotheses
1. State the NH and AH just as in a test of significance
2. Think of the problem as a decision problem, so that the
probabilities of Type I and Type II error are relevant
3. Because of Step 1, Type I errors are more serious. Choose an
∝ (significance level) and consider only tests with
probability of Type I error no greater than ∝
4. Among theses tests, select one that makes the probability of a
Type II error as small as possible (that is, power as larger as
possible). If this probability is too large, you will have to take a
larger sample to reduce the chance of an error
 An alternative to significance testing regards the NH and AH
as two statements of equal status that we must decide b/w.
This decision theory point of view regards statistical inference
in general as giving rules for making decisions in the presence
of uncertainty
$3.62
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
Jana1234
1.0
(1)

Documento también disponible en un lote

Conoce al vendedor

Seller avatar
Jana1234 Rijksuniversiteit Groningen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
12
Miembro desde
10 año
Número de seguidores
9
Documentos
27
Última venta
4 año hace

1.0

1 reseñas

5
0
4
0
3
0
2
0
1
1

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes